149 resultados para stochastic volatility diffusions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bistability arises within a wide range of biological systems from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We seek numerical methods for second‐order stochastic differential equations that reproduce the stationary density accurately for all values of damping. A complete analysis is possible for scalar linear second‐order equations (damped harmonic oscillators with additive noise), where the statistics are Gaussian and can be calculated exactly in the continuous‐time and discrete‐time cases. A matrix equation is given for the stationary variances and correlation for methods using one Gaussian random variable per timestep. The only Runge–Kutta method with a nonsingular tableau matrix that gives the exact steady state density for all values of damping is the implicit midpoint rule. Numerical experiments, comparing the implicit midpoint rule with Heun and leapfrog methods on nonlinear equations with additive or multiplicative noise, produce behavior similar to the linear case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the puzzling behavior of the volatility of individual stock returns over the past few decades. The literature has provided many different explanations to the trend in volatility and this paper tests the viability of the different explanations. Virtually all current theoretical arguments that are provided for the trend in the average level of volatility over time lend themselves to explanations about the difference in volatility levels between firms in the cross-section. We therefore focus separately on the cross-sectional and time-series explanatory power of the different proxies. We fail to find a proxy that is able to explain both dimensions well. In particular, we find that Cao et al. [Cao, C., Simin, T.T., Zhao, J., 2008. Can growth options explain the trend in idiosyncratic risk? Review of Financial Studies 21, 2599–2633] market-to-book ratio tracks average volatility levels well, but has no cross-sectional explanatory power. On the other hand, the low-price proxy suggested by Brandt et al. [Brandt, M.W., Brav, A., Graham, J.R., Kumar, A., 2010. The idiosyncratic volatility puzzle: time trend or speculative episodes. Review of Financial Studies 23, 863–899] has much cross-sectional explanatory power, but has virtually no time-series explanatory power. We also find that the different proxies do not explain the trend in volatility in the period prior to 1995 (R-squared of virtually zero), but explain rather well the trend in volatility at the turn of the Millennium (1995–2005).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrete stochastic simulations, via techniques such as the Stochastic Simulation Algorithm (SSA) are a powerful tool for understanding the dynamics of chemical kinetics when there are low numbers of certain molecular species. However, an important constraint is the assumption of well-mixedness and homogeneity. In this paper, we show how to use Monte Carlo simulations to estimate an anomalous diffusion parameter that encapsulates the crowdedness of the spatial environment. We then use this parameter to replace the rate constants of bimolecular reactions by a time-dependent power law to produce an SSA valid in cases where anomalous diffusion occurs or the system is not well-mixed (ASSA). Simulations then show that ASSA can successfully predict the temporal dynamics of chemical kinetics in a spatially constrained environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein.