194 resultados para seed classification
Resumo:
Anthropometric assessment is a simple, safe, and cost-efficient method to examine the health status of individu-als. The Japanese obesity classification based on the sum of two skin folds (Σ2SF) was proposed nearly 40 years ago therefore its applicability to Japanese living today is unknown. The current study aimed to determine Σ2SF cut-off values that correspond to percent body fat (%BF) and BMI values using two datasets from young Japa-nese adults (233 males and 139 females). Using regression analysis, Σ2SF and height-corrected Σ2SF (HtΣ2SF) values that correspond to %BF of 20, 25, and 30% for males and 30, 35, and 40% for females were determined. In addition, cut-off values of both Σ2SF and HtΣ2SF that correspond to BMI values of 23 kg/m2, 25 kg/m2 and 30 kg/m2 were determined. In comparison with the original Σ2SF values, the proposed values are smaller by about 10 mm at maximum. The proposed values show an improvement in sensitivity from about 25% to above 90% to identify individuals with ≥20% body fat in males and ≥30% body fat in females with high specificity of about 95% in both genders. The results indicate that the original Σ2SF cut-off values to screen obese individuals cannot be applied to young Japanese adults living today and modification is required. Application of the pro-posed values may assist screening in the clinical setting.
Resumo:
Background: The Current Population Survey (CPS) and the American Time Use Survey (ATUS) use the 2002 census occupation system to classify workers into 509 separate occupations arranged into 22 major occupational categories. Methods: We describe the methods and rationale for assigning detailed MET estimates to occupations and present population estimates (comparing outputs generated by analysis of previously published summary MET estimates to the detailed MET estimates) of intensities of occupational activity using the 2003 ATUS data comprised of 20,720 respondents, 5,323 (2,917 males and 2,406 females) of whom reported working 6+ hours at their primary occupation on their assigned reporting day. Results: Analysis using the summary MET estimates resulted in 4% more workers in sedentary occupations, 6% more in light, 7% less in moderate, and 3% less in vigorous compared to using the detailed MET estimates. The detailed estimates are more sensitive to identifying individuals who do any occupational activity that is moderate or vigorous in intensity resulting in fewer workers in sedentary and light intensity occupations. Conclusions: Since CPS/ATUS regularly captures occupation data it will be possible to track prevalence of the different intensity levels of occupations. Updates will be required with inevitable adjustments to future occupational classification systems.
Resumo:
The XML Document Mining track was launched for exploring two main ideas: (1) identifying key problems and new challenges of the emerging field of mining semi-structured documents, and (2) studying and assessing the potential of Machine Learning (ML) techniques for dealing with generic ML tasks in the structured domain, i.e., classification and clustering of semi-structured documents. This track has run for six editions during INEX 2005, 2006, 2007, 2008, 2009 and 2010. The first five editions have been summarized in previous editions and we focus here on the 2010 edition. INEX 2010 included two tasks in the XML Mining track: (1) unsupervised clustering task and (2) semi-supervised classification task where documents are organized in a graph. The clustering task requires the participants to group the documents into clusters without any knowledge of category labels using an unsupervised learning algorithm. On the other hand, the classification task requires the participants to label the documents in the dataset into known categories using a supervised learning algorithm and a training set. This report gives the details of clustering and classification tasks.
Resumo:
The use of appropriate features to represent an output class or object is critical for all classification problems. In this paper, we propose a biologically inspired object descriptor to represent the spectral-texture patterns of image-objects. The proposed feature descriptor is generated from the pulse spectral frequencies (PSF) of a pulse coupled neural network (PCNN), which is invariant to rotation, translation and small scale changes. The proposed method is first evaluated in a rotation and scale invariant texture classification using USC-SIPI texture database. It is further evaluated in an application of vegetation species classification in power line corridor monitoring using airborne multi-spectral aerial imagery. The results from the two experiments demonstrate that the PSF feature is effective to represent spectral-texture patterns of objects and it shows better results than classic color histogram and texture features.
Resumo:
We present the findings of a study into the implementation of explicitly criterion- referenced assessment in undergraduate courses in mathematics. We discuss students' concepts of criterion referencing and also the various interpretations that this concept has among mathematics educators. Our primary goal was to move towards a classification of criterion referencing models in quantitative courses. A secondary goal was to investigate whether explicitly presenting assessment criteria to students was useful to them and guided them in responding to assessment tasks. The data and feedback from students indicates that while students found the criteria easy to understand and useful in informing them as to how they would be graded, it did not alter the way the actually approached the assessment activity.
Resumo:
This presentation discusses some of the general issues relating to the classification of UAS for the purposes of defining and promulgating safety regulations. One possible approach for the definition of a classification scheme for UAS Type Certification Categories reviewed.
Resumo:
Participatory sensing enables collection, processing, dissemination and analysis of environmental sensory data by ordinary citizens, through mobile devices. Researchers have recognized the potential of participatory sensing and attempted applying it to many areas. However, participants may submit low quality, misleading, inaccurate, or even malicious data. Therefore, finding a way to improve the data quality has become a significant issue. This study proposes using reputation management to classify the gathered data and provide useful information for campaign organizers and data analysts to facilitate their decisions.
Resumo:
Workflow nets, a particular class of Petri nets, have become one of the standard ways to model and analyze workflows. Typically, they are used as an abstraction of the workflow that is used to check the so-called soundness property. This property guarantees the absence of livelocks, deadlocks, and other anomalies that can be detected without domain knowledge. Several authors have proposed alternative notions of soundness and have suggested to use more expressive languages, e.g., models with cancellations or priorities. This paper provides an overview of the different notions of soundness and investigates these in the presence of different extensions of workflow nets.We will show that the eight soundness notions described in the literature are decidable for workflow nets. However, most extensions will make all of these notions undecidable. These new results show the theoretical limits of workflow verification. Moreover, we discuss some of the analysis approaches described in the literature.
Resumo:
The use of appropriate features to characterise an output class or object is critical for all classification problems. In order to find optimal feature descriptors for vegetation species classification in a power line corridor monitoring application, this article evaluates the capability of several spectral and texture features. A new idea of spectral–texture feature descriptor is proposed by incorporating spectral vegetation indices in statistical moment features. The proposed method is evaluated against several classic texture feature descriptors. Object-based classification method is used and a support vector machine is employed as the benchmark classifier. Individual tree crowns are first detected and segmented from aerial images and different feature vectors are extracted to represent each tree crown. The experimental results showed that the proposed spectral moment features outperform or can at least compare with the state-of-the-art texture descriptors in terms of classification accuracy. A comprehensive quantitative evaluation using receiver operating characteristic space analysis further demonstrates the strength of the proposed feature descriptors.
Resumo:
Sample complexity results from computational learning theory, when applied to neural network learning for pattern classification problems, suggest that for good generalization performance the number of training examples should grow at least linearly with the number of adjustable parameters in the network. Results in this paper show that if a large neural network is used for a pattern classification problem and the learning algorithm finds a network with small weights that has small squared error on the training patterns, then the generalization performance depends on the size of the weights rather than the number of weights. For example, consider a two-layer feedforward network of sigmoid units, in which the sum of the magnitudes of the weights associated with each unit is bounded by A and the input dimension is n. We show that the misclassification probability is no more than a certain error estimate (that is related to squared error on the training set) plus A3 √((log n)/m) (ignoring log A and log m factors), where m is the number of training patterns. This may explain the generalization performance of neural networks, particularly when the number of training examples is considerably smaller than the number of weights. It also supports heuristics (such as weight decay and early stopping) that attempt to keep the weights small during training. The proof techniques appear to be useful for the analysis of other pattern classifiers: when the input domain is a totally bounded metric space, we use the same approach to give upper bounds on misclassification probability for classifiers with decision boundaries that are far from the training examples.