184 resultados para predictive regression
Resumo:
Background: Young motorists engaging in anti-social and often dangerous driving manoeuvres (which is often referred to as “hooning” within Australia) is an increasing road safety problem. While anecdotal evidence suggests that such behaviour is positively linked with crash involvement, researchers have yet to examine whether younger drivers who deliberately break road rules and drive in an erratic manner (usually with peers) are in fact over represented in crash statistics. This paper outlines research that aimed to identify the characteristics of individuals most likely to engaging in hooning behaviours, as well as examine the frequency of such driving behaviours and if such activity is linked with self-reported crash involvement.---------- Methods: A total of 717 young drivers in Queensland voluntarily completed a questionnaire to investigate their driving behaviour and crash history.---------- Results: Quantitative analysis of the data revealed that almost half the sample reported engaging in some form of “hooning” behaviour at least once in their lifetime, although only 4% indicated heavy participation in the behaviour e.g., >50 times. Street racing was the most common activity reported by participants followed by “drifting” and then “burnouts”. Logistic regression analysis indicated that being younger and a male was predictive of reporting such anti-social driving behaviours, and importantly, a trend was identified between such behaviour and self-reported crash involvement.---------- Conclusions: This research provides preliminary evidence that younger male drivers are more likely to engage in dangerous driving behaviours, which ultimately may prove to increase their overall risk of becoming involved in a crash. This paper will further outline the study findings in regards to current enforcement efforts to deter such driving activity as well as provide direction for future research efforts in this area.---------- Research highlights: ► The self-reported driving behaviours of 717 younger Queensland drivers were examined to investigate the relationship between deliberately breaking road rules and self-reported crash involvement. ► Younger male drivers were most likely to engage in such aberrant driving behaviours and a trend was identified between such behaviour and self-reported crash involvement.
Resumo:
Data collection using Autonomous Underwater Vehicles (AUVs) is increasing in importance within the oceano- graphic research community. Contrary to traditional moored or static platforms, mobile sensors require intelligent planning strategies to manoeuvre through the ocean. However, the ability to navigate to high-value locations and collect data with specific scientific merit is worth the planning efforts. In this study, we examine the use of ocean model predictions to determine the locations to be visited by an AUV, and aid in planning the trajectory that the vehicle executes during the sampling mission. The objectives are: a) to provide near-real time, in situ measurements to a large-scale ocean model to increase the skill of future predictions, and b) to utilize ocean model predictions as a component in an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. We present an algorithm designed to generate paths for AUVs to track a dynamically evolving ocean feature utilizing ocean model predictions. This builds on previous work in this area by incorporating the predicted current velocities into the path planning to assist in solving the 3-D motion planning problem of steering an AUV between two selected locations. We present simulation results for tracking a fresh water plume by use of our algorithm. Additionally, we present experimental results from field trials that test the skill of the model used as well as the incorporation of the model predictions into an AUV trajectory planner. These results indicate a modest, but measurable, improvement in surfacing error when the model predictions are incorporated into the planner.
Resumo:
Background The relationship between positive parent-child interactions and optimal child development is well established. Families with a child with a disability may face additional challenges to establishing positive parent-child relationships. There are limited studies addressing the effectiveness of interventions which seek to address these issues with parents and young children with a disability. In particular, prior studies of music therapy with this group have been limited by small sample sizes and the use of measures of limited reliability and validity. Objective This study investigates the effectiveness of a short-term group music therapy intervention for parents who have a child with a disability and explores the factors associated with higher outcomes for participating families. Methods The participants were 201 mother-child dyads, where the child had a disability. Pre and post intervention parental questionnaires and clinician observation measures were taken on a range of parental wellbeing, parenting behaviours and child developmental factors. Descriptive data, t-tests for repeated measures and a predictive model tested via logistic regression are presented. Results Significant improvements pre to post were found for parent mental health, child communication and social skills, parenting sensitivity, parental engagement with child and acceptance of child, child responsiveness to parent, and child interest and participation in program activities. There was also evidence that parents were very satisfied with the program and that it brought social benefits to families. Reliable change on six or more indicators of parent or child functioning was predicted by attendance and parent education. Conclusions This study provides positive evidence for the effectiveness of group music therapy in promoting improved parental mental health, positive parenting and key child developmental areas. Whilst several limitations are discussed, the study does address some of the gaps in the music therapy evidence base in this area.
Resumo:
This study examines if outcome expectancies (perceived consequences of engaging in certain behavior) and self- efficacy expectancies (confidence in personal capacity to regulate behavior) contribute to treatment outcome for alcohol dependence. Few clinical studies have examined these constructs. The Drinking Expectancy Profile (DEP), a psychometric measure of alcohol expectancy and drinking refusal selfefficacy, was administered to 298 alcohol-dependent patients (207 males) at assessment and on completion of a 12-week cognitive–behavioral therapy alcohol abstinence program. Baseline measures of expectancy and self-efficacy were not strong predictors of outcome. However, for the 164 patients who completed treatment, all alcohol expectancy and self-efficacy factors of the DEP showed change over time. The DEP scores approximated community norms at the end of treatment. Discriminant analysis indicated that change in social pressure drinking refusal self-efficacy, sexual enhancement expectancies, and assertion expectancies successfully discriminated those who successfully completed treatment from those who did not. Future research should examine the basis of expectancies related to social functioning as a possible mechanism of treatment response and a means to enhance treatment outcome.
Resumo:
Road crashes cost world and Australian society a significant proportion of GDP, affecting productivity and causing significant suffering for communities and individuals. This paper presents a case study that generates data mining models that contribute to understanding of road crashes by allowing examination of the role of skid resistance (F60) and other road attributes in road crashes. Predictive data mining algorithms, primarily regression trees, were used to produce road segment crash count models from the road and traffic attributes of crash scenarios. The rules derived from the regression trees provide evidence of the significance of road attributes in contributing to crash, with a focus on the evaluation of skid resistance.
Resumo:
A trend in design and implementation of modern industrial automation systems is to integrate computing, communication and control into a unified framework at different levels of machine/factory operations and information processing. These distributed control systems are referred to as networked control systems (NCSs). They are composed of sensors, actuators, and controllers interconnected over communication networks. As most of communication networks are not designed for NCS applications, the communication requirements of NCSs may be not satisfied. For example, traditional control systems require the data to be accurate, timely and lossless. However, because of random transmission delays and packet losses, the control performance of a control system may be badly deteriorated, and the control system rendered unstable. The main challenge of NCS design is to both maintain and improve stable control performance of an NCS. To achieve this, communication and control methodologies have to be designed. In recent decades, Ethernet and 802.11 networks have been introduced in control networks and have even replaced traditional fieldbus productions in some real-time control applications, because of their high bandwidth and good interoperability. As Ethernet and 802.11 networks are not designed for distributed control applications, two aspects of NCS research need to be addressed to make these communication networks suitable for control systems in industrial environments. From the perspective of networking, communication protocols need to be designed to satisfy communication requirements for NCSs such as real-time communication and high-precision clock consistency requirements. From the perspective of control, methods to compensate for network-induced delays and packet losses are important for NCS design. To make Ethernet-based and 802.11 networks suitable for distributed control applications, this thesis develops a high-precision relative clock synchronisation protocol and an analytical model for analysing the real-time performance of 802.11 networks, and designs a new predictive compensation method. Firstly, a hybrid NCS simulation environment based on the NS-2 simulator is designed and implemented. Secondly, a high-precision relative clock synchronization protocol is designed and implemented. Thirdly, transmission delays in 802.11 networks for soft-real-time control applications are modeled by use of a Markov chain model in which real-time Quality-of- Service parameters are analysed under a periodic traffic pattern. By using a Markov chain model, we can accurately model the tradeoff between real-time performance and throughput performance. Furthermore, a cross-layer optimisation scheme, featuring application-layer flow rate adaptation, is designed to achieve the tradeoff between certain real-time and throughput performance characteristics in a typical NCS scenario with wireless local area network. Fourthly, as a co-design approach for both a network and a controller, a new predictive compensation method for variable delay and packet loss in NCSs is designed, where simultaneous end-to-end delays and packet losses during packet transmissions from sensors to actuators is tackled. The effectiveness of the proposed predictive compensation approach is demonstrated using our hybrid NCS simulation environment.
Resumo:
This paper presents an approach to predict the operating conditions of machine based on classification and regression trees (CART) and adaptive neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step ahead prediction of time series techniques. In this study, the number of available observations and the number of predicted steps are initially determined by using false nearest neighbor method and auto mutual information technique, respectively. These values are subsequently utilized as inputs for prediction models to forecast the future values of the machines’ operating conditions. The performance of the proposed approach is then evaluated by using real trending data of low methane compressor. A comparative study of the predicted results obtained from CART and ANFIS models is also carried out to appraise the prediction capability of these models. The results show that the ANFIS prediction model can track the change in machine conditions and has the potential for using as a tool to machine fault prognosis.
Resumo:
The number of children with special health care needs surviving infancy and attending school has been increasing. Due to their health status, these children may be at risk of low social-emotional and learning competencies (e.g., Lightfoot, Mukherjee, & Sloper, 2000; Zehnder, Landolt, Prchal, & Vollrath, 2006). Early social problems have been linked to low levels of academic achievement (Ladd, 2005), inappropriate behaviours at school (Shiu, 2001) and strained teacher-child relationships (Blumberg, Carle, O‘Connor, Moore, & Lippmann, 2008). Early learning difficulties have been associated with mental health problems (Maughan, Rowe, Loeber, & Stouthamer-Loeber, 2003), increased behaviour issues (Arnold, 1997), delinquency (Loeber & Dishion, 1983) and later academic failure (Epstein, 2008). Considering the importance of these areas, the limited research on special health care needs in social-emotional and learning domains is a factor driving this research. The purpose of the current research is to investigate social-emotional and learning competence in the early years for Australian children who have special health care needs. The data which informed this thesis was from Growing up in Australia: The Longitudinal Study of Australian Children. This is a national, longitudinal study being conducted by the Commonwealth Department of Families, Housing, Community Services and Indigenous Affairs. The study has a national representative sample, with data collection occurring biennially, in 2004 (Wave 1), 2006 (Wave 2) and 2008 (Wave 3). Growing up in Australia uses a cross-sequential research design involving two cohorts, an Infant Cohort (0-1 at recruitment) and a Kindergarten Cohort (4-5 at recruitment). This study uses the Kindergarten Cohort, for which there were 4,983 children at recruitment. Three studies were conducted to address the objectives of this thesis. Study 1 used Wave 1 data to identify and describe Australian children with special health care needs. Children who identified as having special health care needs through the special health care needs screener were selected. From this, descriptive analyses were run. The results indicate that boys, children with low birth weight and children from families with low levels of maternal education are likely to be in the population of children with special health care needs. Further, these children are likely to be using prescription medications, have poor general health and are likely to have specific condition diagnoses. Study 2 used Wave 1 data to examine differences between children with special health care needs and their peers in social-emotional competence and learning competence prior to school. Children identified by the special health care needs screener were chosen for the case group (n = 650). A matched case control group of peers (n = 650), matched on sex, cultural and linguistic diversity, family socioeconomic position and age, were the comparison group. Social-emotional competence was measured through Social/Emotional Domain scores taken from the Growing up in Australia Outcome Index, with learning competence measured through Learning Domain scores. Results suggest statistically significant differences in scores between the two groups. Children with special health care needs have lower levels of social-emotional and learning competence prior to school compared to their peers. Study 3 used Wave 1 and Wave 2 data to examine the relationship between special health care needs at Wave 1 and social-emotional competence and learning competence at Wave 2, as children started school. The sample for this study consisted of children in the Kindergarten Cohort who had teacher data at Wave 2. Results from multiple regression models indicate that special health care needs prior to school (Wave 1) significantly predicts social-emotional competence and learning competence in the early years of school (Wave 2). These results indicate that having special health care needs prior to school is a risk factor for the social-emotional and learning domains in the early years of school. The results from these studies give valuable insight into Australian children with special health care needs and their social-emotional and learning competence in the early years. The Australia population of children with special health care needs were primarily male children, from families with low maternal education, were likely to be of poor health and taking prescription medications. It was found that children with special health care needs were likely to have lower social-emotional competence and learning competence prior to school compared to their peers. Results indicate that special health care needs prior to school were predictive of lower social-emotional and learning competencies in the early years of school. More research is required into this unique population and their competencies over time. However, the current research provides valuable insight into an under researched 'at risk' population.
Resumo:
There have been notable advances in learning to control complex robotic systems using methods such as Locally Weighted Regression (LWR). In this paper we explore some potential limits of LWR for robotic applications, particularly investigating its application to systems with a long horizon of temporal dependence. We define the horizon of temporal dependence as the delay from a control input to a desired change in output. LWR alone cannot be used in a temporally dependent system to find meaningful control values from only the current state variables and output, as the relationship between the input and the current state is under-constrained. By introducing a receding horizon of the future output states of the system, we show that sufficient constraint is applied to learn good solutions through LWR. The new method, Receding Horizon Locally Weighted Regression (RH-LWR), is demonstrated through one-shot learning on a real Series Elastic Actuator controlling a pendulum.
Resumo:
Circuit-breakers (CBs) are subject to electrical stresses with restrikes during capacitor bank operation. Stresses are caused by the overvoltages across CBs, the interrupting currents and the rate of rise of recovery voltage (RRRV). Such electrical stresses also depend on the types of system grounding and the types of dielectric strength curves. The aim of this study is to demonstrate a restrike waveform predictive model for a SF6 CB that considered the types of system grounding: grounded and non-grounded and the computation accuracy comparison on the application of the cold withstand dielectric strength and the hot recovery dielectric strength curve including the POW (point-on-wave) recommendations to make an assessment of increasing the CB remaining life. The simulation of SF6 CB stresses in a typical 400 kV system was undertaken and the results in the applications are presented. The simulated restrike waveforms produced with the identified features using wavelet transform can be used for restrike diagnostic algorithm development with wavelet transform to locate a substation with breaker restrikes. This study found that the hot withstand dielectric strength curve has less magnitude than the cold withstand dielectric strength curve for restrike simulation results. Computation accuracy improved with the hot withstand dielectric strength and POW controlled switching can increase the life for a SF6 CB.