61 resultados para polybrominated diphenyl ether
Resumo:
Ions formed from lipids during electrospray ionization of crude lipid extracts have been mass-selected within a quadrupole linear ion trap mass spectrometer and allowed to react with ozone vapor. Gas-phase ion-molecule reactions between unsaturated lipid ions and ozone are found to yield two primary product ions for each carbon-carbon double bond within the molecule. The mass-to-charge ratios of these chemically induced fragments are diagnostic of the position of unsaturation within the precursor ion. This novel analytical technique, dubbed ozone-induced dissociation (OzID), can be applied both in series and in parallel with conventional collision-induced dissociation (CID) to provide near-complete structural assignment of unknown lipids within complex mixtures without prior fractionation or derivatization. In this study, OzID is applied to a suite of complex lipid extracts from sources including human lens, bovine kidney, and commercial olive oil, thus demonstrating the technique to be applicable to a broad range of lipid classes including both neutral and acidic glycerophospholipids, sphingomyelins, and triacylglycerols. Gas-phase ozonolysis reactions are also observed with different types of precursor ions including \[M + H](+), \[M + Li](+), \[M + Na](+), and \[M H](-): in each case yielding fragmentation data that allow double bond position to be unambiguously assigned. Within the human lens lipid extract, three sphingomyelin regioisomers, namely SM(d18:0/15Z-24:1), SM(d18:0/17Z-24:1), and SM(d18:0/19Z-24:1), and a novel phosphatidylethanolamine alkyl ether, GPEtn(11Z-18:1e/9Z18:1), are identified using a combination of CID and OzID. These discoveries demonstrate that lipid identification based on CID alone belies the natural structural diversity in lipid biochemistry and illustrate the potential of OzID as a complementary approach within automated, high-throughput lipid analysis protocols.
Resumo:
Purpose. To quantify the molecular lipid composition of patient-matched tear and meibum samples and compare tear and meibum lipid molecular profiles. Methods. Lipids were extracted from tears and meibum by bi-phasic methods using 10:3 tertbutyl methyl ether:methanol, washed with aqueous ammonium acetate, and analyzed by chipbased nanoelectrospray ionization tandem mass spectrometry. Targeted precursor ion and neutral loss scans identified individual molecular lipids and quantification was obtained by comparison to internal standards in each lipid class. Results. Two hundred and thirty-six lipid species were identified and quantified from nine lipid classes comprised of cholesterol esters, wax esters, (O-acyl)-x-hydroxy fatty acids, triacylglycerols, phosphatidylcholine, lysophosphatidylcholine, phosphatidylethanolamine, sphingomyelin, and phosphatidylserine. With the exception of phospholipids, lipid molecular profiles were strikingly similar between tears and meibum. Conclusions. Comparisons between tears and meibum indicate that meibum is likely to supply the majority of lipids in the tear film lipid layer. However, the observed higher mole ratio of phospholipid in tears shows that analysis of meibum alone does not provide a complete understanding of the tear film lipid composition.
Resumo:
Detection and characterisation of structural modifications of a hindered amine light stabiliser (HALS) directly from a polyester-based coil coating have been achieved by desorption electrospray ionisation mass spectrometry (DESI-MS) for the first time. In situ detection is made possible by exposing the coating to an acetone vapour atmosphere prior to analysis. This is a gentle and non-destructive treatment that allows diffusion of analyte to the surface without promoting lateral migration. Using this approach a major structural modification of the HALS TINUVIN®123 (bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate) was discovered where one N-ether piperidine moiety (N-OC8H17) is converted to a secondary piperidine (N–H). With the use of 2-dimensional DESI-MS imaging the modification was observed to arise during high curing temperatures (ca. 260 °C) and under simulated physiological conditions (80 °C, full solar spectrum). It is proposed that the secondary piperidine derivative is a result of a highly reactive aminyl radical intermediate produced by N–O homolytic bond cleavage. The nature of the bond cleavage is also suggested by ESR spin-trapping experiments employing α-phenyl-N-tert-butyl nitrone (PBN) in toluene at 80 °C. The presence of a secondary piperidine derivative in situ and the implication of N–OR competing with NO–R bond cleavage suggest an alternative pathway for generation of the nitroxyl radical—an essential requirement in anti-oxidant activity that has not previously been described for the N-ether sub-class of HALS.
Resumo:
The lipid composition of the human lens is distinct from most other tissues in that it is high in dihydrosphingomyelin and the most abundant glycerophospholipids in the lens are unusual 1-O-alkyl-ether linked phosphatidylethanolamines and phosphatidylserines. In this study, desorption electrospray ionization (DESI) mass spectrometry-imaging was used to determine the distribution of these lipids in the human lens along with other lipids including, ceramides, ceramide-1-phosphates, and lyso 1-O-alkyl ethers. To achieve this, 25 μm lens slices were mounted onto glass slides and analyzed using a linear ion-trap mass spectrometer equipped with a custom-built, 2-D automated DESI source. In contrast to other tissues that have been previously analyzed by DESI, the presence of a strong acid in the spray solvent was required to desorb lipids directly from lens tissue. Distinctive distributions were observed for [M + H]+ ions arising from each lipid class. Of particular interest were ionized 1-O-alkyl phosphatidylethanolamines and phosphatidylserines, PE (18:1e/18:1), and PS (18:1e/18:1), which were found in a thin ring in the outermost region of the lens. This distribution was confirmed by quantitative analysis of lenses that were sectioned into four distinct regions (outer, barrier, inner, and core), extracted and analyzed by electrospray ionization tandem mass spectrometry. DESI-imaging also revealed a complementary distribution for the structurally-related lyso 1-O-alkyl phosphatidylethanolamine, LPE (18:1e), which was localized closer to the centre of the lens. The data obtained in this study indicate that DESI-imaging is a powerful tool for determining the spatial distribution of human lens lipids. © 2010 American Society for Mass Spectrometry.
Resumo:
Electrospray ionisation tandem mass spectrometry has allowed the unambiguous identification and quantification of individual lens phospholipids in human and six animal models. Using this approach ca. 100 unique phospholipids have been characterised. Parallel analysis of the same lens extracts by a novel direct-insertion electron-ionization technique found the cholesterol content of human lenses to be significantly higher (ca. 6 times) than lenses from the other animals. The most abundant phospholipids in all the lenses examined were choline-containing phospholipids. In rat, mouse, sheep, cow, pig and chicken, these were present largely as phosphatidylcholines, in contrast 66% of the total phospholipid in Homo sapiens was sphingomyelin, with the most abundant being dihydrosphingomyelins, in particular SM(d18:0/16:0) and SM(d18:0/24:1). The abundant glycerophospholipids within human lenses were found to be predominantly phosphatidylethanolamines and phosphatidylserines with surprisingly high concentrations of ether-linked alkyl chains identified in both classes. This study is the first to identify the phospholipid class (head-group) and assign the constituent fatty acid(s) for each lipid molecule and to quantify individual lens phospholipids using internal standards. These data clearly indicate marked differences in the membrane lipid composition of the human lens compared to commonly used animal models and thus predict a significant variation in the membrane properties of human lens fibre cells compared to those of other animals. © 2008 Elsevier B.V. All rights reserved.
Resumo:
Herein we describe the design and synthesis of a series of solid-tethered [2]rotaxanes utilising crown ether-naphthalene diimide or crown ether- bipyridinium host guest interactions. TentaGel polystyrene resins were initially modified in a two-stage procedure to azide functionalised beads before the target supramolecular architectures were attached using a copper catalysed “click” procedure. The final assembly was examined using IR spectroscopy and gel-phase 1H High Resolution Magic Angle Spinning (HR MAS) NMR spectroscopy. The HR MAS technique enabled a direct comparison between the solid-tethered architectures and the synthesis and characterisation of analogous solution-based [2]rotaxanes to be made.
Preparation of graphene oxide/epoxy nanocomposites with significantly improved mechanical properties
Resumo:
The effect of graphene oxide (GO) on the mechanical properties and the curing reaction of Diglycidyl Ether of Bisphenol A/F and Triethylenetetramine epoxy system was investigated. GO was prepared by oxidation of graphite flakes and characterized by spectroscopic and microscopic techniques. Epoxy nanocomposites were fabricated with different GO loading by solution mixing technique. It was found that incorporation of small amount of GO into the epoxy matrix significantly enhanced the mechanical properties of the epoxy. In particular, model I fracture toughness was increased by nearly 50% with the addition of 0.1 wt. % GO to epoxy. The toughening mechanism was understood by fractography analysis of the tested samples. The more irregular, coarse, and multi-plane fracture surfaces of the epoxy/GO nanocomposites were observed. This implies that the two-dimensional GO sheets effectively disturbed and deflected the crack propagation. At 0.5 wt. % GO, elastic modulus was ~35% greater than neat epoxy. Differential scanning calorimetry (DSC) results showed that GO addition moderately affect the glass transition temperature (Tg) of epoxy. The maximum decrease of Tg by ~7 oC was shown for the nanocomposite with 0.5 wt. % GO. DSC results further revealed that GO significantly hindered the cure reaction in the epoxy system.
Resumo:
The ligands G1- and G2-oligo (benzyl ether) (PBE) dendrons and their iron(II) complexes [Fe(Gn-PBE)3]A2·xH2O (with n = 1, 2 and A = triflate, tosylate) were prepared. The magnetic properties of the complexes were investigated by a SQUID magnetometer. All complexes exhibit gradual spin transition below room temperature. At very low temperatures the magnetic behaviour reflects zero-field splitting (ZFS) effects. 57Fe-Mössbauer spectroscopy was performed to distinguish between ZFS of high spin species and spin state conversion into the low spin state. Further characterisation was carried out by thermogravimetric analysis (TGA) and FT-IR spectroscopy. Structural features have been determined by powder XRD measurements.
Resumo:
Thirty workers who had been exposed to combustion products for several years due to testing of flame retarding qualities of building materials and 30 controls from the same facility were investigated. Concentrations found in samples taken from different places of the facility were up to 14,660 μg/kg for polybrominated dibenzofurans and up to 67.1 μg/kg for polychlorinated dibenzodioxins (PCDDs) and dibenzofurans (PCDFs). Physical examination, routine laboratory parameters, and blood fat concentrations of PCDDs and PCDFs revealed normal findings. Neurotoxic symptoms showed a weak tendency of overrepresentation among the exposed workers. The frequency of neurobehavioural symptoms increased significantly with trait anxiety independent of exposure to combustion products. (C) 2000 Elsevier Science Ltd.
Resumo:
The influence of graphene oxide (GO) and its surface oxidized debris (OD) on the cure chemistry of an amine cured epoxy resin has been investigated by Fourier Transform Infrared Emission Spectroscopy (FT-IES) and Differential Scanning Calorimetry (DSC). Spectral analysis of IR radiation emitted at the cure temperature from thin films of diglycidyl ether of bisphenol A epoxy resin (DGEBA) and 4,4'-diaminodiphenylmethane (DDM) curing agent with and without GO allowed the cure kinetics of the interphase between the bulk resin and GO to be monitored in real time, by measuring both the consumption of primary (1°) amine and epoxy groups, formation of ether groups as well as computing the profiles for formation of secondary (2°) and tertiary (3°) amines. OD was isolated from as-produced GO (aGO) by a simple autoclave method to give OD-free autoclaved GO (acGO). It has been found that the presence of OD on the GO prevents active sites on GO surfaces fully catalysing and participating in the reaction of DGEBA with DDM, which results in slower reaction and a lower crosslink density of the three-dimensional networks in the aGO-resin interphase compared to the acGO-resin interphase. We also determined that OD itself promoted DGEBA homopolymerization. A DSC study further confirmed that the aGO nanocomposite exhibited lower Tg while acGO nanocomposite showed higher Tg compared to neat resin because of the difference in crosslink densities of the matrix around the different GOs.
Resumo:
In the structure of the title hydrated salt, NH4+·C8H5Cl2O3-·0.5H2O, where the anion derives from (3,5-dichlorophenoxy)acetic acid, the ammonium cation is involved in extensive N-H...O hydrogen bonding with both carboxylate and ether O-atom acceptors giving sheet structures lying parallel to (100). The water molecule of solvation lies on a crystallographic twofold rotation axis and is involved in intra-sheet O-H...Ocarboxylate hydrogen-bonding interactions. In the anion, the oxoacetate side chain assumes an antiperiplanar conformation with the defining C-O-C-C torsion angle = -171.33 (15)°.
Resumo:
Propolis of Australian stingless bees (Tetragonula carbonaria, Meliponini) originating from Corymbia torelliana (Myrtaceae) fruit resins was tested for its antimicrobial activities as well as its flavonoid contents. This study aimed at the isolation, structural elucidation and antibacterial testing of flavanones of C. torelliana fruit resins that are incorporated into stingless bee propolis. Flavanones of this study were elucidated by spectroscopic and spectrometric methods including UV, 1D and 2D NMR, EI-MS, ESI-MS and HR-MS. The results indicated known C-methylated flavanones namely, 1 (2S)-cryptostrobin, its regioisomer 2 (2S)- stroboponin, 3 (2S)- cryptostrobin 7-methyl ether, and 6 (2S)- desmethoxymatteucinol, and known flavanones 4 (2S)- pinostrobin and 5 (2S)- pinocembrin as markers for C. torelliana fruit resins and one propolis type. Ethanolic preparations of propolis were shown to be active against Staphylococcus aureus (ATCC 25923) and to a lesser extent against Pseudomonas aeruginosa (ATCC 27853). C. torelliana flavanones inhibited the growth of S. aureus therefore contributing to the antibacterial effects observed for Australian stingless bee propolis extracts.
Resumo:
In order to simulate stiff biochemical reaction systems, an explicit exponential Euler scheme is derived for multidimensional, non-commutative stochastic differential equations with a semilinear drift term. The scheme is of strong order one half and A-stable in mean square. The combination with this and the projection method shows good performance in numerical experiments dealing with an alternative formulation of the chemical Langevin equation for a human ether a-go-go related gene ion channel mode
Resumo:
The biodistribution of micelles with and without folic acid targeting ligands were studied using a block copolymer consisting of acrylic acid (AA) and polyethylene glycol methyl ether acrylate (PEGMEA) blocks. The polymers were prepared using RAFT polymerization in the presence of a folic acid functionalized RAFT agent. Oxoplatin was conjugated onto the acrylic acid block to form amphiphilic polymers which, when diluted in water, formed stable micelles. In order to probe the in vivo stability, a selection of micelles were cross-linked using 1,8-diamino octane. The sizes of the micelles used in this study range between 75 and 200 nm, with both spherical and worm-like conformation. The effects of cross-linking, folate conjugation and different conformation on the biodistribution were studied in female nude mice (BALB/c) following intravenous injection into the tail vein. Using optical imaging to monitor the fluorophore-labeled polymer, the in vivo biodistribution of the micelles was monitored over a 48 h time-course after which the organs were removed and evaluated ex vivo. These experiments showed that both cross-linking and conjugation with folic acid led to increased fluorescence intensities in the organs, especially in the liver and kidneys, while micelles that are not conjugated with folate and not cross-linked are cleared rapidly from the body. Higher accumulation in the spleen, liver, and kidneys was also observed for micelles with worm-like shapes compared to the spherical micelles. While the various factors of cross-linking, micelle shape, and conjugation with folic acid all contribute separately to prolong the circulation time of the micelle, optimization of these parameters for drug delivery devices could potentially overcome adverse effects such as liver and kidney toxicity.
Resumo:
Fluorinated surfactant-based aqueous film-forming foams (AFFFs) are made up of per- and polyfluorinated alkyl substances (PFAS) and are used to extinguish fires involving highly flammable liquids. The use of perfluorooctanesulfonic acid (PFOS) and other perfluoroalkyl acids (PFAAs) in some AFFF formulations has been linked to substantial environmental contamination. Recent studies have identified a large number of novel and infrequently reported fluorinated surfactants in different AFFF formulations. In this study, a strategy based on a case-control approach using quadrupole time-of-flight tandem mass spectrometry (QTOF-MS/MS) and advanced statistical methods has been used to extract and identify known and unknown PFAS in human serum associated with AFFF-exposed firefighters. Two target sulfonic acids [PFOS and perfluorohexanesulfonic acid (PFHxS)], three non-target acids [perfluoropentanesulfonic acid (PFPeS), perfluoroheptanesulfonic acid (PFHpS), and perfluorononanesulfonic acid (PFNS)], and four unknown sulfonic acids (Cl-PFOS, ketone-PFOS, ether-PFHxS, and Cl-PFHxS) were exclusively or significantly more frequently detected at higher levels in firefighters compared to controls. The application of this strategy has allowed for identification of previously unreported fluorinated chemicals in a timely and cost-efficient way.