69 resultados para petri dish
Resumo:
Reducing complexity in Information Systems is an important topic in both research and industry. One strategy to deal with complexity is separation of concerns, which results in less complex, easily maintainable and more reusable systems. Separation of concerns can be addressed through the Aspect Oriented paradigm. Although this paradigm has been well researched in programming, it is still at the preliminary stage in the area of Business Process Management. While some efforts have been made to extend business process modelling with aspect oriented capability, it has not yet been investigated how aspect oriented business process models should be executed at runtime. In this paper, we propose a generic solution to support execution of aspect oriented business process models based on the principle behind dynamic weaving of aspects. This solution is formally specified using Coloured Petri Nets. The resulting formal specification serves as the blueprint to the implementation of a service module in the framework of a state-of-the-art Business Process Management System. Using this developed artefact, a case study is performed in which two simplified processes from real business in the domain of banking are modelled and executed in an aspect oriented manner. Through this case study, we also demonstrate that adoption of aspect oriented modularization increases the reusability while reducing the complexity of business process models in practice.
Resumo:
This research introduces a general methodology in order to create a Coloured Petri Net (CPN) model of a security protocol. Then standard or user-defined security properties of the created CPN model are identified. After adding an attacker model to the protocol model, the security property is verified using state space method. This approach is applied to analyse a number of trusted computing protocols. The results show the applicability of proposed method to analyse both standard and user-defined properties.
Resumo:
The Surface Ocean Aerosol Production (SOAP) study was undertaken in February/March 2012 in the biologically active waters of the Chatham Rise, NZ. Aerosol hygroscopicity and volatility were examined with a volatility hygroscopicity tandem differential mobility analyser. These observations confirm results from other hygroscopicity-based studies that the dominant fraction of the observed remote marine particles were non-sea salt sulfates. Further observations are required to clarify the influences of seawater composition, meteorology and analysis techniques seasonally across different ocean basins.
Resumo:
The mechanisms involved in alcohol use disorders are complex. It has been shown that ghrelin is an important signal for the control of body weight homeostasis, preferably by interacting with hypothalamic circuits, as well as for drug reward by activating the mesolimbic dopamine system. The ghrelin receptor (GHS-R1A) has been shown to be required for alcohol-induced reward. Additionally, ghrelin increases and GHR-R1A antagonists reduce moderate alcohol consumption in mice, and a single nucleotide polymorphism in the GHS-R1A gene has been associated with high alcohol consumption in humans. However, the role of central ghrelin signaling in high alcohol consumption is not known. Therefore, the role of GHS-R1A in operant self-administration of alcohol in rats as well as for high alcohol consumption in Long-Evans rats and in alcohol preferring [Alko alcohol (AA)] rats was studied here. In the present study, the GHS-R1A antagonist, JMV2959, was found to reduce the operant self-administration of alcohol in rats and to decrease high alcohol intake in Long-Evans rats as well as in AA rats. These results suggest that the ghrelin receptor signaling system, specifically GHS-R1A, is required for operant self-administration of alcohol and for high alcohol intake in rats. Therefore, the GHS-R1A may be a therapeutic target for treatment of addictive behaviors, such as alcohol dependence.
Resumo:
This article studies the problem of transforming a process model with an arbitrary topology into an equivalent well-structured process model. While this problem has received significant attention, there is still no full characterization of the class of unstructured process models that can be transformed into well-structured ones, nor an automated method for structuring any process model that belongs to this class. This article fills this gap in the context of acyclic process models. The article defines a necessary and sufficient condition for an unstructured acyclic process model to have an equivalent well-structured process model under fully concurrent bisimulation, as well as a complete structuring method. The method has been implemented as a tool that takes process models captured in the BPMN and EPC notations as input. The article also reports on an empirical evaluation of the structuring method using a repository of process models from commercial practice.
Resumo:
Identification of behavioural contradictions is an important aspect of software engineering, in particular for checking the consistency between a business process model used as system specification and a corresponding workflow model used as implementation. In this paper, we propose causal behavioural profiles as the basis for a consistency notion, which capture essential behavioural information, such as order, exclusiveness, and causality between pairs of activities. Existing notions of behavioural equivalence, such as bisimulation and trace equivalence, might also be applied as consistency notions. Still, they are exponential in computation. Our novel concept of causal behavioural profiles provides a weaker behavioural consistency notion that can be computed efficiently using structural decomposition techniques for sound free-choice workflow systems if unstructured net fragments are acyclic or can be traced back to S- or T-nets.
Resumo:
Security protocols are designed in order to provide security properties (goals). They achieve their goals using cryptographic primitives such as key agreement or hash functions. Security analysis tools are used in order to verify whether a security protocol achieves its goals or not. The analysed property by specific purpose tools are predefined properties such as secrecy (confidentiality), authentication or non-repudiation. There are security goals that are defined by the user in systems with security requirements. Analysis of these properties is possible with general purpose analysis tools such as coloured petri nets (CPN). This research analyses two security properties that are defined in a protocol that is based on trusted platform module (TPM). The analysed protocol is proposed by Delaune to use TPM capabilities and secrets in order to open only one secret from two submitted secrets to a recipient
Resumo:
Distributed Network Protocol Version 3 (DNP3) is the de-facto communication protocol for power grids. Standard-based interoperability among devices has made the protocol useful to other infrastructures such as water, sewage, oil and gas. DNP3 is designed to facilitate interaction between master stations and outstations. In this paper, we apply a formal modelling methodology called Coloured Petri Nets (CPN) to create an executable model representation of DNP3 protocol. The model facilitates the analysis of the protocol to ensure that the protocol will behave as expected. Also, we illustrate how to verify and validate the behaviour of the protocol, using the CPN model and the corresponding state space tool to determine if there are insecure states. With this approach, we were able to identify a Denial of Service (DoS) attack against the DNP3 protocol.
Resumo:
Interaction topologies in service-oriented systems are usually classified into two styles: choreographies and orchestrations. In a choreography, services interact in a peer-to-peer manner and no service plays a privileged role. In contrast, interactions in an orchestration occur between one particular service, the orchestrator, and a number of subordinated services. Each of these topologies has its trade-offs. This paper considers the problem of migrating a service-oriented system from a choreography style to an orchestration style. Specifically, the paper presents a tool chain for synthesising orchestrators from choreographies. Choreographies are initially represented as communicating state machines. Based on this representation, an algorithm is presented that synthesises the behaviour of an orchestrator, which is also represented as a state machine. Concurrent regions are then identified in the synthesised state machine to obtain a more compact representation in the form of a Petri net. Finally, it is shown how the resulting Petri nets can be transformed into notations supported by commercial tools, such as the Business Process Modelling Notation (BPMN).
Resumo:
This thesis addresses the topic of real-time decision making by driverless (autonomous) city vehicles, i.e. their ability to make appropriate driving decisions in non-simplified urban traffic conditions. After addressing the state of research, and explaining the research question, the thesis presents solutions for the subcomponents which are relevant for decision making with respect to information input (World Model), information output (Driving Maneuvers), and the real-time decision making process. TheWorld Model is a software component developed to fulfill the purpose of collecting information from perception and communication subsystems, maintaining an up-to-date view of the vehicle’s environment, and providing the required input information to the Real-Time Decision Making subsystem in a well-defined, and structured way. The real-time decision making process consists of two consecutive stages. While the first decision making stage uses a Petri net to model the safetycritical selection of feasible driving maneuvers, the second stage uses Multiple Criteria Decision Making (MCDM) methods to select the most appropriate driving maneuver, focusing on fulfilling objectives related to efficiency and comfort. The complex task of autonomous driving is subdivided into subtasks, called driving maneuvers, which represent the output (i.e. decision alternatives) of the real-time decision making process. Driving maneuvers are considered as implementations of closed-loop control algorithms, each capable of maneuvering the autonomous vehicle in a specific traffic situation. Experimental tests in both a 3D simulation and real-world experiments attest that the developed approach is suitable to deal with the complexity of real-world urban traffic situations.
Resumo:
Recently Gao et al. proposed a lightweight RFID mutual authentication protocol [3] to resist against intermittent position trace attacks and desynchronization attacks and called it RIPTA-DA. They also verified their protocol’s security by data reduction method with the learning parity with noise (LPN) and also formally verified the functionality of the proposed scheme by Colored Petri Nets. In this paper, we investigate RIPTA-DA’s security. We present an efficient secret disclosure attack against the protocol which can be used to mount both de-synchronization and traceability attacks against the protocol. Thus our attacks show that RIPTA-DA protocol is not a RIPTA-DA.
Resumo:
Business Process Management describes a holistic management approach for the systematic design, modeling, execution, validation, monitoring and improvement of organizational business processes. Traditionally, most attention within this community has been given to control-flow aspects, i.e., the ordering and sequencing of business activities, oftentimes in isolation with regards to the context in which these activities occur. In this paper, we propose an approach that allows executable process models to be integrated with Geographic Information Systems. This approach enables process models to take geospatial and other geographic aspects into account in an explicit manner both during the modeling phase and the execution phase. We contribute a structured modeling methodology, based on the well-known Business Process Model and Notation standard, which is formalized by means of a mapping to executable Colored Petri nets. We illustrate the feasibility of our approach by means of a sustainability-focused case example of a process with important ecological concerns.
Resumo:
Supervisory Control and Data Acquisition (SCADA) systems are one of the key foundations of smart grids. The Distributed Network Protocol version 3 (DNP3) is a standard SCADA protocol designed to facilitate communications in substations and smart grid nodes. The protocol is embedded with a security mechanism called Secure Authentication (DNP3-SA). This mechanism ensures that end-to-end communication security is provided in substations. This paper presents a formal model for the behavioural analysis of DNP3-SA using Coloured Petri Nets (CPN). Our DNP3-SA CPN model is capable of testing and verifying various attack scenarios: modification, replay and spoofing, combined complex attack and mitigation strategies. Using the model has revealed a previously unidentified flaw in the DNP3-SA protocol that can be exploited by an attacker that has access to the network interconnecting DNP3 devices. An attacker can launch a successful attack on an outstation without possessing the pre-shared keys by replaying a previously authenticated command with arbitrary parameters. We propose an update to the DNP3-SA protocol that removes the flaw and prevents such attacks. The update is validated and verified using our CPN model proving the effectiveness of the model and importance of the formal protocol analysis.