67 resultados para mouse pituitary


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uropathogenic E. coli (UPEC) are the primary cause of urinary tract infections. Recent studies have demonstrated that UPEC can invade and replicate within epithelial cells, suggesting that this bacterial pathogen may occupy an intracellular niche within the host. Given that many intracellular pathogens target macrophages, we assessed the interactions between UPEC and macrophages. Colonization of the mouse bladder by UPEC strain CFT073 resulted in increased expression of myeloid-restricted genes, consistent with the recruitment of inflammatory macrophages to the site of infection. In in vitro assays, CFT073 was able to survive within primary mouse bone marrow-derived macrophages (BMM) up to 24 h post-infection. Three additional well-characterized clinical UPEC isolates associated with distinct UTI symptomatologies displayed variable long-term survival within BMM. UPEC strains UTI89 and VR50, originally isolated from patients with cystitis and asymptomatic bacteriuria respectively, showed elevated bacterial loads in BMM at 24 h post-infection as compared to CFT073 and the asymptomatic bacteriuria strain 83972. These differences did not correlate with differential effects on macrophage survival or initial uptake of bacteria. E. coli UTI89 localized to a Lamp1+ vesicular compartment within BMM. In contrast to survival within mouse BMM, intracellular bacterial loads of VR50 were low in both human monocyte-derived macrophages (HMDM) and in human T24 bladder epithelial cells. Collectively, these data suggest that some UPEC isolates may subvert macrophage anti-microbial pathways, and that host species differences may impact on intracellular UPEC survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fear-related illnesses such as post-traumatic stress disorder (PTSD) impose a tremendous burden on individual quality of life, families, and the national economy. In the military population, 17-20% of services members returning from deployment are diagnosed with PTSD. While treatments have improved for PTSD and are helpful for some, many people continue to suffer despite therapy. The aim of this research is to examine fear memory behaviourally and at the cellular level in the amygdala by using a unique inter-cross strain of high and low fear phenotype mice. An extended outcross C57BL/6J x DBA/2J (F8) are selected for high or low Pavlovian fear memory to context and cue. On presentation of either the original learning context or the cue (tone) mice display high or low levels of freezing as a behavioural measure of fear. In order to identify key aspects of the cellular basis of this difference in fear memory behaviour we are making measurements of protein levels and neuron numbers of a known pathway involved in the consolidation of a long term fear memory (pMAPK). Ongoing studies aim to determine if high fear behaviour is associated with differential signalling in the lateral amygdala compared to low fear behaviour. Additionally, by blocking this pathway in the lateral amygdala (LA), we aim to reduce fear behaviour following Pavlovian fear conditioning. This research will help to unravel the cellular mechanisms underlying high fear behaviour and advance the field toward targeted treatment and improved outcomes, ultimately improving human quality of life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC) can invade and replicate within bladder epithelial cells, and some UPEC strains can also survive within macrophages. To understand the UPEC transcriptional program associated with intramacrophage survival, we performed host–pathogen co-transcriptome analyses using RNA sequencing. Mouse bone marrow-derived macrophages (BMMs) were challenged over a 24 h time course with two UPEC reference strains that possess contrasting intramacrophage phenotypes: UTI89, which survives in BMMs, and 83972, which is killed by BMMs. Neither of these strains caused significant BMM cell death at the low multiplicity of infection that was used in this study. We developed an effective computational framework that simultaneously separated, annotated, and quantified the mammalian and bacterial transcriptomes. BMMs responded to the two UPEC strains with a broadly similar gene expression program. In contrast, the transcriptional responses of the UPEC strains diverged markedly from each other. We identified UTI89 genes upregulated at 24 h post-infection, and hypothesized that some may contribute to intramacrophage survival. Indeed, we showed that deletion of one such gene (pspA) significantly reduced UTI89 survival within BMMs. Our study provides a technological framework for simultaneously capturing global changes at the transcriptional level in co-cultures, and has generated new insights into the mechanisms that UPEC use to persist within the intramacrophage environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water mouse, Xeromys myoides, is currently recognised as a vulnerable species in Australia, inhabiting a small number of distinct and isolated coastal regions of Queensland and the Northern Territory. An examination of the evolutionary history and contemporary influences shaping the genetic structure of this species is required to make informed conservation management decisions. Here, we report the first analysis undertaken on the phylogeography and population genetics of the water mouse across its mainland Australian distribution. Genetic diversity was assessed at two mitochondrial DNA (Cytochrome b, 1000 bp; D-loop, 400 bp) and eight microsatellite DNA loci. Very low genetic diversity was found, indicating that water mice underwent a recent expansion throughout their Australian range and constitute a single evolutionarily significant unit. Microsatellite analyses revealed that the highest genetic diversity was found in the Mackay region of central Queensland; population substructure was also identified, suggesting that local populations may be isolated in this region. Conversely, genetic diversity in the Coomera region of south-east Queensland was very low and the population in this region has experienced a significant genetic bottleneck. These results have significant implications for future management, particularly in terms of augmenting populations through translocations or reintroducing water mice in areas where they have gone extinct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological factors underlying individual variability in fearfulness and anxiety have important implications for stress-related psychiatric illness including PTSD and major depression. Using an advanced intercross line (AIL) derived from C57BL/6 and DBA/2J mouse strains and behavioral selection over 3 generations, we established two lines exhibiting High or Low fear behavior after fear conditioning. Across the selection generations, the two lines showed clear differences in training and tests for contextual and conditioned fear. Before fear conditioning training, there were no differences between lines in baseline freezing to a novel context. However, after fear conditioning High line mice demonstrated pronounced freezing in a new context suggestive of poor context discrimination. Fear generalization was not restricted to contextual fear. High fear mice froze to a novel acoustic stimulus while freezing in the Low line did not increase over baseline. Enhanced fear learning and generalization are consistent with transgenic and pharmacological disruption of the hypothalamic-pituitary-adrenal axis (HPA-axis) (Brinks, 2009, Thompson, 2004, Kaouane, 2012). To determine whether there were differences in HPA-axis regulation between the lines, morning urine samples were collected to measure basal corticosterone. Levels of secreted corticosterone in the circadian trough were analyzed by corticosterone ELISA. High fear mice were found to have higher basal corticosterone levels than low line animals. Examination of hormonal stress response components by qPCR revealed increased expression of CRH mRNA and decreased mRNA for MR and CRHR1 in hypothalamus of high fear mice. These alterations may contribute to both the behavioral phenotype and higher basal corticosterone in High fear mice. To determine basal brain activity in vivo in High and Low fear mice we used manganese-enhanced magnetic resonance imaging (MEMRI). Analysis revealed a pattern of basal brain activity made up of amygdala, cortical and hippocampal circuits that was elevated in the High line. Ongoing studies also seek to determine the relative balance of excitatory and inhibitory tone in the amygdala and hippocampus and the neuronal structure of its neurons. While these heterogeneous lines are selected on fear memory expression, HPA-axis alterations and differences in hippocampal activity segregate with the behavioral phenotypes. These differences are detectable in a basal state strongly suggesting these are biological traits underlying the behavioral phenotype (Johnson et al, 2011).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Pituitary volume is currently measured as a marker of hypothalamic-pituitary-adrenal hyperactivity in patients with psychosis despite suggestions of susceptibility to antipsychotics. Qualifying and quantifying the effect of atypical antipsychotics on the volume of the pituitary gland will determine whether this measure is valid as a future estimate of HPA-axis activation in psychotic populations. AIMS: To determine the qualitative and quantitative effect of atypical antipsychotic medications on pituitary gland volume in a first-episode psychosis population. METHOD: Pituitary volume was measured from T1-weighted magnetic resonance images in a group of 43 first-episode psychosis patients, the majority of whom were neuroleptic-naive, at baseline and after 3months of treatment, to determine whether change in pituitary volume was correlated with cumulative dose of atypical antipsychotic medication. RESULTS: There was no significant baseline difference in pituitary volume between subjects and controls, or between neuroleptic-naive and neuroleptic-treated subjects. Over the follow-up period there was a negative correlation between percentage change in pituitary volume and cumulative 3-month dose of atypical antipsychotic (r=-0.37), i.e. volume increases were associated with lower doses and volume decreases with higher doses. CONCLUSIONS: Atypical antipsychotic medications may reduce pituitary gland volume in a dose-dependent manner suggesting that atypical antipsychotic medication may support affected individuals to cope with stress associated with emerging psychotic disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: An early response to antipsychotic treatment in patients with psychosis has been associated with a better course and outcome. However, factors that predict treatment response are not well understood. The onset of schizophrenia and related disorders has been associated with increased levels of stress and hyper-activation of the hypothalamic-pituitary-adrenal (HPA) axis. This study examined whether pituitary volume at the onset of psychosis may be a potential predictor of early treatment response in first-episode psychosis (FEP) patients. METHODS: We investigated the relationship between baseline pituitary volume and symptomatic treatment response over 12 weeks using mixed model analysis in a sample of 42 drug-naïve or early treated FEP patients who participated in a controlled dose-finding study of quetiapine fumarate. Logistic regression was used to examine predictors of treatment response. Pituitary volume was measured from magnetic resonance imaging scans that were obtained upon entry into the trial. RESULTS: Larger pituitary volume was associated with less improvement in overall psychotic symptoms (Brief Psychiatric Rating Scale (BPRS) P=0.031) and positive symptoms (BPRS positive symptom subscale P=0.010). Regardless of gender, patients with a pituitary volume at the 25th percentile (413 mm(3)) were approximately three times more likely to respond to treatment by week 12 than those at the 75th percentile (635 mm(3)) (odds ratio=3.07, CI: 0.90-10.48). CONCLUSION: The association of baseline pituitary volumes with early treatment response highlights the importance of the HPA axis in emerging psychosis. Potential implications for treatment strategies in early psychosis are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This structural magnetic resonance imaging study examined the relationship between pituitary gland volume (PGV) and lifetime number of parasuicidal behaviors in a first-presentation, teenage borderline personality disorder (BPD) sample with minimal exposure to treatment. Hierarchical regression analysis revealed that age and number of parasuicidal behaviors were significant predictors of PGV. These findings indicate that parasuicidal behavior in BPD might be associated with greater activation of the hypothalamic-pituitary-adrenal (HPA) axis. Further studies are required using direct neuroendocrine measures and exploring other parameters of self-injurious behavior, such as recency of self-injurious behavior, intent to die and medical threat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study used magnetic resonance imaging to examine pituitary gland volume (PGV) in teenage patients with a first presentation of borderline personality disorder (BPD). No difference in PGV was observed between healthy controls (n=20) and the total BPD cohort (n=20). However, within the BPD cohort, those exposed to childhood trauma (n=9) tended to have smaller pituitaries (-18%) than those with no history of childhood trauma (n=10). These preliminary findings suggest that exposure to childhood trauma, rather than BPD, per se, might be associated with reduced PGV, possibly reflecting hypothalamic-pituitary-adrenal axis dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background We examined pituitary volume before the onset of psychosis in subjects who were at ultra-high risk (UHR) for developing psychosis. Methods Pituitary volume was measured on 1.5-mm, coronal, 1.5-T magnetic resonance images in 94 UHR subjects recruited from admissions to the Personal Assessment and Crisis Evaluation Clinic in Melbourne, Australia and in 49 healthy control subjects. The UHR subjects were scanned at baseline and were followed clinically for a minimum of 1 year to detect transition to psychosis. Results Within the UHR group, a larger baseline pituitary volume was a significant predictor of future transition to psychosis. The UHR subjects who later went on to develop psychosis (UHR-P, n = 31) had a significantly larger (+12%; p = .001) baseline pituitary volume compared with UHR subjects who did not go on to develop psychosis (UHR-NP, n = 63). The survival analysis conducted by Cox regression showed that the risk of developing psychosis during the follow-up increased by 20% for every 10% increase in baseline pituitary volume (p = .002). Baseline pituitary volume of the UHR-NP subjects was smaller not only compared with UHR-P (as described above) but also compared with control subjects (−6%; p = .032). Conclusions The phase before the onset of psychosis is associated with a larger pituitary volume, suggesting activation of the HPA axis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genome maintenance (GM) is an essential defense system against aging and cancer, as both are characterized by increased genome instability. Here, we compared the copy number variation and mutation rate of 518 GM-associated genes in the naked mole rat (NMR), mouse, and human genomes. GM genes appeared to be strongly conserved, with copy number variation in only four genes. Interestingly, we found NMR to have a higher copy number of CEBPG, a regulator of DNA repair, and TINF2, a protector of telomere integrity. NMR, as well as human, was also found to have a lower rate of germline nucleotide substitution than the mouse. Together, the data suggest that the long-lived NMR, as well as human, has more robust GM than mouse and identifies new targets for the analysis of the exceptional longevity of the NMR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ectopic calcification (EC), which is the pathological deposition of calcium and phosphate in extra-skeletal tissues, may be associated with hypercalcaemic and hyperphosphataemic disorders, or it may occur in the absence of metabolic abnormalities. In addition, EC may be inherited as part of several monogenic disorders and studies of these have provided valuable insights into the metabolic pathways regulating mineral metabolism. For example, studies of tumoural calcinosis, a disorder characterised by hyperphosphataemia and progressive EC, have revealed mutations of fibroblast growth factor 23 (FGF23), polypeptide N-acetyl galactosaminyltransferase 3 (GALNT3) and klotho (KL), which are all part of a phosphate-regulating pathway. However, such studies in humans are limited by the lack of available large families with EC, and to facilitate such studies we assessed the progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU) for EC. This identified two mutants with autosomal recessive forms of EC, and reduced lifespan, designated Ecalc1 and Ecalc2. Genetic mapping localized the Ecalc1 and Ecalc2 loci to a 11.0 Mb region on chromosome 5 that contained the klotho gene (Kl), and DNA sequence analysis identified nonsense (Gln203Stop) and missense (Ile604Asn) Kl mutations in Ecalc1 and Ecalc2 mice, respectively. The Gln203Stop mutation, located in KL1 domain, was severely hypomorphic and led to a 17-fold reduction of renal Kl expression. The Ile604Asn mutation, located in KL2 domain, was predicted to impair klotho protein stability and in vitro expression studies in COS-7 cells revealed endoplasmic reticulum retention of the Ile604Asn mutant. Further phenotype studies undertaken in Ecalc1 (kl203X/203X) mice demonstrated elevations in plasma concentrations of phosphate, FGF23 and 1,25-dihydroxyvitamin D. Thus, two allelic variants of Kl that develop EC and represent mouse models for tumoural calcinosis have been established. © 2015 Esapa et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations of UDP-N-acetyl-alpha-D-galactosamine polypeptide N-acetyl galactosaminyl transferase 3 (GALNT3) result in familial tumoural calcinosis (FTC) and the hyperostosis-hyperphosphataemia syndrome (HHS), which are autosomal recessive disorders characterised by soft-tissue calcification and hyperphosphataemia. To facilitate in vivo studies of these heritable disorders of phosphate homeostasis, we embarked on establishing a mouse model by assessing progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU), and identified a mutant mouse, TCAL, with autosomal recessive inheritance of ectopic calcification, which involved multiple tissues, and hyperphosphataemia; the phenotype was designated TCAL and the locus, Tcal. TCAL males were infertile with loss of Sertoli cells and spermatozoa, and increased testicular apoptosis. Genetic mapping localized Tcal to chromosome 2 (62.64-71.11 Mb) which contained the Galnt3. DNA sequence analysis identified a Galnt3 missense mutation (Trp589Arg) in TCAL mice. Transient transfection of wild-type and mutant Galnt3-enhanced green fluorescent protein (EGFP) constructs in COS-7 cells revealed endoplasmic reticulum retention of the Trp589Arg mutant and Western blot analysis of kidney homogenates demonstrated defective glycosylation of Galnt3 in Tcal/Tcal mice. Tcal/Tcal mice had normal plasma calcium and parathyroid hormone concentrations; decreased alkaline phosphatase activity and intact Fgf23 concentrations; and elevation of circulating 1,25-dihydroxyvitamin D. Quantitative reverse transcriptase-PCR (qRT-PCR) revealed that Tcal/Tcal mice had increased expression of Galnt3 and Fgf23 in bone, but that renal expression of Klotho, 25-hydroxyvitamin D-1α-hydroxylase (Cyp27b1), and the sodium-phosphate co-transporters type-IIa and -IIc was similar to that in wild-type mice. Thus, TCAL mice have the phenotypic features of FTC and HHS, and provide a model for these disorders of phosphate metabolism. © 2012 Esapa et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic kidney disease (CKD) is characterized by renal fibrosis that can lead to end-stage renal failure, and studies have supported a strong genetic influence on the risk of developing CKD. However, investigations of the underlying molecular mechanisms are hampered by the lack of suitable hereditary models in animals. We therefore sought to establish hereditary mouse models for CKD and renal fibrosis by investigating mice treated with the chemical mutagen N-ethyl-N-nitrosourea, and identified a mouse with autosomal recessive renal failure, designated RENF. Three-week old RENF mice were smaller than their littermates, whereas at birth they had been of similar size. RENF mice, at 4-weeks of age, had elevated concentrations of plasma urea and creatinine, indicating renal failure, which was associated with small and irregularly shaped kidneys. Genetic studies using DNA from 10 affected mice and 91 single nucleotide polymorphisms mapped the Renf locus to a 5.8Mbp region on chromosome 17E1.3. DNA sequencing of the xanthine dehydrogenase (Xdh) gene revealed a nonsense mutation at codon 26 that co-segregated with affected RENF mice. The Xdh mutation resulted in loss of hepatic XDH and renal Cyclooxygenase-2 (COX-2) expression. XDH mutations in man cause xanthinuria with undetectable plasma uric acid levels and three RENF mice had plasma uric acid levels below the limit of detection. Histological analysis of RENF kidney sections revealed abnormal arrangement of glomeruli, intratubular casts, cellular infiltration in the interstitial space, and interstitial fibrosis. TUNEL analysis of RENF kidney sections showed extensive apoptosis predominantly affecting the tubules. Thus, we have established a mouse model for autosomal recessive early-onset renal failure due to a nonsense mutation in Xdh that is a model for xanthinuria in man. This mouse model could help to increase our understanding of the molecular mechanisms associated with renal fibrosis and the specific roles of XDH and uric acid. © 2012 Piret et al.