347 resultados para machine tool
Resumo:
Current software tools for documenting and developing models of buildings focus on supporting a single user who is a specialist in the specific software used within their own discipline. Extensions to these tools for use by teams maintain the single discipline view and focus on version and file management. There is a perceived need in industry to have tools that specifically support collaboration among individuals from multiple disciplines with both a graphical representation of the design and a persistent data model. This project involves the development of a prototype of such a software tool. We have identified multi-user 3D virtual worlds as an appropriate software base for the development of a collaborative design tool. These worlds are inherently multi-user and therefore directly support collaboration through a sense of awareness of others in the virtual world, their location within the world, and provide various channels for direct and indirect communication. Such software platforms also provide a 3D building and modelling environment that can be adapted to the needs of the building and construction industry. DesignWorld is a prototype system for collaborative design developed by augmenting the Second Life (SL) commercial software platform1 with a collection web-based tools for communication and design. Agents manage communication between the 3D virtual world and the web-based tools. In addition, agents maintain a persistent external model of designs in the 3D world which can be augmented with data such as relationships, disciplines and versions not usually associated with 3D virtual worlds but required in design scenarios.
Resumo:
Durability issues of reinforced concrete construction cost millions of dollars in repair or demolition. Identification of the causes of degradation and a prediction of service life based on experience, judgement and local knowledge has limitations in addressing all the associated issues. The objective of this CRC CI research project is to develop a tool that will assist in the interpretation of the symptoms of degradation of concrete structures, estimate residual capacity and recommend cost effective solutions. This report is a documentation of the research undertaken in connection with this project. The primary focus of this research is centred on the case studies provided by Queensland Department of Main Roads (QDMR) and Brisbane City Council (BCC). These organisations are endowed with the responsibility of managing a huge volume of bridge infrastructure in the state of Queensland, Australia. The main issue to be addressed in managing these structures is the deterioration of bridge stock leading to a reduction in service life. Other issues such as political backlash, public inconvenience, approach land acquisitions are crucial but are not within the scope of this project. It is to be noted that deterioration is accentuated by aggressive environments such as salt water, acidic or sodic soils. Carse, 2005, has noted that the road authorities need to invest their first dollars in understanding their local concretes and optimising the durability performance of structures and then look at potential remedial strategies.
Resumo:
The road and transport industry in Australia and overseas has come a long way to understanding the impact of road traffic noise on the urban environment. Most road authorities now have guidelines to help assess and manage the impact of road traffic noise on noise-sensitive areas and development. While several economic studies across Australia and overseas have tried to value the impact of noise on property prices, decision-makers investing in road traffic noise management strategies have relatively limited historic data and case studies to go on. The perceived success of a noise management strategy currently relies largely on community expectations at a given time, and is not necessarily based on the analysis of the costs and benefits, or the long-term viability and value to the community of the proposed treatment options. With changing trends in urban design, it is essential that the 'whole-of-life' costs and benefits of noise ameliorative treatment options and strategies be identified and made available for decisionmakers in future investment considerations. For this reason, CRC for Construction Innovation Australia funded a research project, Noise Management in Urban Environments to help decision-makers with future road traffic noise management investment decisions. RMIT University and the Queensland Department of Main Roads (QDMR) have conducted the research work, in collaboration with the Queensland Department of Public Works, ARUP Pty Ltd, and the Queensland University of Technology. The research has formed the basis for the development of a decision-support software tool, and helped collate technical and costing data for known noise amelioration treatment options. We intend that the decision support software tool (DST) should help an investment decision-maker to be better informed of suitable noise ameliorative treatment options on a project-by-project basis and identify likely costs and benefits associated with each of those options. This handbook has been prepared as a procedural guide for conducting a comparative assessment of noise ameliorative options. The handbook outlines the methodology and assumptions adopted in the decision-support framework for the investment decision-maker and user of the DST. The DST has been developed to provide an integrated user-friendly interface between road traffic noise modelling software, the relevant assessment criteria and the options analysis process. A user guide for the DST is incorporated in this handbook.
Resumo:
In Australia, the Queensland fruit fly (B. tryoni), is the most destructive insect pest of horticulture, attacking nearly all fruit and vegetable crops. This project has researched and prototyped a system for monitoring fruit flies so that authorities can be alerted when a fly enters a crop in a more efficient manner than is currently used. This paper presents the idea of our sensor platform design as well as the fruit fly detection and recognition algorithm by using machine vision techniques. Our experiments showed that the designed trap and sensor platform is capable to capture quality fly images, the invasive flies can be successfully detected and the average precision of the Queensland fruit fly recognition is 80% from our experiment.
Resumo:
This paper proposes a new prognosis model based on the technique for health state estimation of machines for accurate assessment of the remnant life. For the evaluation of health stages of machines, the Support Vector Machine (SVM) classifier was employed to obtain the probability of each health state. Two case studies involving bearing failures were used to validate the proposed model. Simulated bearing failure data and experimental data from an accelerated bearing test rig were used to train and test the model. The result obtained is very encouraging and shows that the proposed prognostic model produces promising results and has the potential to be used as an estimation tool for machine remnant life prediction.
Resumo:
Energy efficient lubricants are becoming increasingly popular. This is due to a global increase in environmental awareness combined with the potential of reducing operating costs. A new test method of evaluating the energy efficiency of gear oils has been described in this report. The method involves measuring the power required by an FZG test rig to run while using a particular test lubricant. For each oil that was being evaluated, the rig was run for 10 minutes at a load stage of 10. Six extreme pressure (EP) industrial gear oils of mineral base were tested. The difference in power requirements between the best and the worst performing oils was 2.77 and 3.24 kW, respectively. This equates to a 14.6% reduction in power, a significant amount if considered in relation to a high powered industrial machine. The oils of superior performance were noticed to run at reduced temperatures. They were also more expensive than the other products of lesser performance.
Resumo:
In condition-based maintenance (CBM), effective diagnostics and prognostics are essential tools for maintenance engineers to identify imminent fault and to predict the remaining useful life before the components finally fail. This enables remedial actions to be taken in advance and reschedules production if necessary. This paper presents a technique for accurate assessment of the remnant life of machines based on historical failure knowledge embedded in the closed loop diagnostic and prognostic system. The technique uses the Support Vector Machine (SVM) classifier for both fault diagnosis and evaluation of health stages of machine degradation. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for multi-class fault diagnosis. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state. The results obtained were very encouraging and showed that the proposed prognosis system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.
Resumo:
It is important to detect and treat malnutrition in hospital patients so as to improve clinical outcome and reduce hospital stay. The aim of this study was to develop and validate a nutrition screening tool with a simple and quick scoring system for acute hospital patients in Singapore. In this study, 818 newly admitted patients aged above 18 years old were screened using five parameters that contribute to the risk of malnutrition. A dietitian blinded to the nutrition screening score assessed the same patients using the reference standard, Subjective Global Assessment (SGA) within 48 hours. The sensitivity and specificity were established using the Receiver Operator Characteristics (ROC) curve and the best cutoff scores determined. The nutrition parameter with the largest Area Under the ROC Curve (AUC) was chosen as the final screening tool, which was named 3-Minute Nutrition Screening (3-MinNS). The combination of the parameters weight loss, intake and muscle wastage (3-MinNS), gave the largest AUC when compared with SGA. Using 3-MinNS, the best cutoff point to identify malnourished patients is three (sensitivity 86%, specificity 83%). The cutoff score to identify subjects at risk of severe malnutrition is five (sensitivity 93%, specificity 86%). 3-Minute Nutrition Screening is a valid, simple and rapid tool to identify patients at risk of malnutrition in Singapore acute hospital patients. It is able to differentiate patients at risk of moderate malnutrition and severe malnutrition for prioritization and management purposes.
Resumo:
This paper reports on the research and development of an ICT tool to facilitate the learning of ratio and fractions by adult prisoners. The design of the ICT tool was informed by a semiotic framework for mathematical meaning-making. The ICT tool thus employed multiple semiotic resources including topological, typological, and social-actional resources. The results showed that individual semiotic resource could only represent part of the mathematical concept, while at the same time it might signify something else to create a misconception. When multiple semiotic resources were utilised the mathematical ideas could be better learnt.
Resumo:
Expert elicitation is the process of retrieving and quantifying expert knowledge in a particular domain. Such information is of particular value when the empirical data is expensive, limited, or unreliable. This paper describes a new software tool, called Elicitator, which assists in quantifying expert knowledge in a form suitable for use as a prior model in Bayesian regression. Potential environmental domains for applying this elicitation tool include habitat modeling, assessing detectability or eradication, ecological condition assessments, risk analysis, and quantifying inputs to complex models of ecological processes. The tool has been developed to be user-friendly, extensible, and facilitate consistent and repeatable elicitation of expert knowledge across these various domains. We demonstrate its application to elicitation for logistic regression in a geographically based ecological context. The underlying statistical methodology is also novel, utilizing an indirect elicitation approach to target expert knowledge on a case-by-case basis. For several elicitation sites (or cases), experts are asked simply to quantify their estimated ecological response (e.g. probability of presence), and its range of plausible values, after inspecting (habitat) covariates via GIS.
Resumo:
Scoliosis is a three-dimensional spinal deformity which requires surgical correction in progressive cases. In order to optimize correction and avoid complications following scoliosis surgery, patient-specific finite element models (FEM) are being developed and validated by our group. In this paper, the modeling methodology is described and two clinically relevant load cases are simulated for a single patient. Firstly, a pre-operative patient flexibility assessment, the fulcrum bending radiograph, is simulated to assess the model's ability to represent spine flexibility. Secondly, intra-operative forces during single rod anterior correction are simulated. Clinically, the patient had an initial Cobb angle of 44 degrees, which reduced to 26 degrees during fulcrum bending. Surgically, the coronal deformity corrected to 14 degrees. The simulated initial Cobb angle was 40 degrees, which reduced to 23 degrees following the fulcrum bending load case. The simulated surgical procedure corrected the coronal deformity to 14 degrees. The computed results for the patient-specific FEM are within the accepted clinical Cobb measuring error of 5 degrees, suggested that this modeling methodology is capable of capturing the biomechanical behaviour of a scoliotic human spine during anterior corrective surgery.