215 resultados para lithium iron phosphate
Resumo:
An investigation of cylindrical iron rods burning in pressurised oxygen under microgravity conditions is presented. It has been shown that, under similar experimental conditions, the melting rate of a burning, cylindrical iron rod is higher in microgravity than in normal gravity by a factor of 1.8 ± 0.3. This paper presents microanalysis of quenched samples obtained in a microgravity environment in a 2.0 s duration drop tower facility in Brisbane, Australia. These images indicate that the solid/liquid interface is highly convex in reduced gravity, compared to the planar geometry typically observed in normal gravity, which increases the contact area between liquid and solid phases by a factor of 1.7 ± 0.1. Thus, there is good agreement between the proportional increase in solid/liquid interface surface area and melting rate in microgravity. This indicates that the cause of the increased melting rates for cylindrical iron rods burning in microgravity is altered interfacial geometry at the solid/liquid interface.
Resumo:
The present rate of technological advance continues to place significant demands on data storage devices. The sheer amount of digital data being generated each year along with consumer expectations, fuels these demands. At present, most digital data is stored magnetically, in the form of hard disk drives or on magnetic tape. The increase in areal density (AD) of magnetic hard disk drives over the past 50 years has been of the order of 100 million times, and current devices are storing data at ADs of the order of hundreds of gigabits per square inch. However, it has been known for some time that the progress in this form of data storage is approaching fundamental limits. The main limitation relates to the lower size limit that an individual bit can have for stable storage. Various techniques for overcoming these fundamental limits are currently the focus of considerable research effort. Most attempt to improve current data storage methods, or modify these slightly for higher density storage. Alternatively, three dimensional optical data storage is a promising field for the information storage needs of the future, offering very high density, high speed memory. There are two ways in which data may be recorded in a three dimensional optical medium; either bit-by-bit (similar in principle to an optical disc medium such as CD or DVD) or by using pages of bit data. Bit-by-bit techniques for three dimensional storage offer high density but are inherently slow due to the serial nature of data access. Page-based techniques, where a two-dimensional page of data bits is written in one write operation, can offer significantly higher data rates, due to their parallel nature. Holographic Data Storage (HDS) is one such page-oriented optical memory technique. This field of research has been active for several decades, but with few commercial products presently available. Another page-oriented optical memory technique involves recording pages of data as phase masks in a photorefractive medium. A photorefractive material is one by which the refractive index can be modified by light of the appropriate wavelength and intensity, and this property can be used to store information in these materials. In phase mask storage, two dimensional pages of data are recorded into a photorefractive crystal, as refractive index changes in the medium. A low-intensity readout beam propagating through the medium will have its intensity profile modified by these refractive index changes and a CCD camera can be used to monitor the readout beam, and thus read the stored data. The main aim of this research was to investigate data storage using phase masks in the photorefractive crystal, lithium niobate (LiNbO3). Firstly the experimental methods for storing the two dimensional pages of data (a set of vertical stripes of varying lengths) in the medium are presented. The laser beam used for writing, whose intensity profile is modified by an amplitudemask which contains a pattern of the information to be stored, illuminates the lithium niobate crystal and the photorefractive effect causes the patterns to be stored as refractive index changes in the medium. These patterns are read out non-destructively using a low intensity probe beam and a CCD camera. A common complication of information storage in photorefractive crystals is the issue of destructive readout. This is a problem particularly for holographic data storage, where the readout beam should be at the same wavelength as the beam used for writing. Since the charge carriers in the medium are still sensitive to the read light field, the readout beam erases the stored information. A method to avoid this is by using thermal fixing. Here the photorefractive medium is heated to temperatures above 150�C; this process forms an ionic grating in the medium. This ionic grating is insensitive to the readout beam and therefore the information is not erased during readout. A non-contact method for determining temperature change in a lithium niobate crystal is presented in this thesis. The temperature-dependent birefringent properties of the medium cause intensity oscillations to be observed for a beam propagating through the medium during a change in temperature. It is shown that each oscillation corresponds to a particular temperature change, and by counting the number of oscillations observed, the temperature change of the medium can be deduced. The presented technique for measuring temperature change could easily be applied to a situation where thermal fixing of data in a photorefractive medium is required. Furthermore, by using an expanded beam and monitoring the intensity oscillations over a wide region, it is shown that the temperature in various locations of the crystal can be monitored simultaneously. This technique could be used to deduce temperature gradients in the medium. It is shown that the three dimensional nature of the recording medium causes interesting degradation effects to occur when the patterns are written for a longer-than-optimal time. This degradation results in the splitting of the vertical stripes in the data pattern, and for long writing exposure times this process can result in the complete deterioration of the information in the medium. It is shown in that simply by using incoherent illumination, the original pattern can be recovered from the degraded state. The reason for the recovery is that the refractive index changes causing the degradation are of a smaller magnitude since they are induced by the write field components scattered from the written structures. During incoherent erasure, the lower magnitude refractive index changes are neutralised first, allowing the original pattern to be recovered. The degradation process is shown to be reversed during the recovery process, and a simple relationship is found relating the time at which particular features appear during degradation and recovery. A further outcome of this work is that the minimum stripe width of 30 ìm is required for accurate storage and recovery of the information in the medium, any size smaller than this results in incomplete recovery. The degradation and recovery process could be applied to an application in image scrambling or cryptography for optical information storage. A two dimensional numerical model based on the finite-difference beam propagation method (FD-BPM) is presented and used to gain insight into the pattern storage process. The model shows that the degradation of the patterns is due to the complicated path taken by the write beam as it propagates through the crystal, and in particular the scattering of this beam from the induced refractive index structures in the medium. The model indicates that the highest quality pattern storage would be achieved with a thin 0.5 mm medium; however this type of medium would also remove the degradation property of the patterns and the subsequent recovery process. To overcome the simplistic treatment of the refractive index change in the FD-BPM model, a fully three dimensional photorefractive model developed by Devaux is presented. This model shows significant insight into the pattern storage, particularly for the degradation and recovery process, and confirms the theory that the recovery of the degraded patterns is possible since the refractive index changes responsible for the degradation are of a smaller magnitude. Finally, detailed analysis of the pattern formation and degradation dynamics for periodic patterns of various periodicities is presented. It is shown that stripe widths in the write beam of greater than 150 ìm result in the formation of different types of refractive index changes, compared with the stripes of smaller widths. As a result, it is shown that the pattern storage method discussed in this thesis has an upper feature size limit of 150 ìm, for accurate and reliable pattern storage.
Resumo:
The NIR spectra of reichenbachite, scholzite and parascholzite have been studied at 298 K. The spectra of the minerals are different, in line with composition and crystal structural variations. Cation substitution effects are significant in their electronic spectra and three distinctly different electronic transition bands are observed in the near-infrared spectra at high wavenumbers in the 12000-7600 cm-1 spectral region. Reichenbachite electronic spectrum is characterised by Cu(II) transition bands at 9755 and 7520 cm-1. A broad spectral feature observed for ferrous ion in the 12000-9000 cm-1 region both in scholzite and parascholzite. Some what similarities in the vibrational spectra of the three phosphate minerals are observed particularly in the OH stretching region. The observation of strong band at 5090 cm-1 indicates strong hydrogen bonding in the structure of the dimorphs, scholzite and parascholzite. The three phosphates exhibit overlapping bands in the 4800-4000 cm-1 region resulting from the combinations of vibrational modes of (PO4)3- units.
Resumo:
Lithium niobate powders from the raw powders of Li2 O5 are directly synthesized by a combustion method with urea fuel. The synthesis parameters (e.g. the calcination temperature, calcination time, and urea-to-(Li2 CO3 + Nb2 O5) quantity ratio) are studied to reveal the optimized synthesis conditions for preparing high-quality lithium niobate powders. In our present work, it is found that a urea-to-(Li2 CO3 + Nb2 O5) ratio close to 3, calcination temperature at 550-600 degrees and reaction time around 2.5h may lead to high-quality lithium niobate powsers. The microstructure of synthesized powders is further studied; a possible mechanism of the involved reactions is also proposed.
Resumo:
A solvothermal route for the preparation of crystalline state lithium niobate using Li2 CO3 and Nb2 O5 is developed. Oxalic acid is employed as solvent, which coordinates with niobium oxide to stimulate the main reaction. Scanning electron microscopy images show that the as-prepared sample displays a cubic morphology. X-ray diffraction and IR spectrum of the as-prepared sample indicate that the sample is well crystalline.
Resumo:
Calcium Phosphate ceramic has been widely used in bone tissue engineering due to its excellent biocompatibility and biodegradability. However, low mechanical properties and biodegradability limit their potential applications. In this project, hydroxyapatite (HA) and calcium phosphate bioglass were used to produce porous tri-calcium phosphate (TCP) bio-ceramic scaffolds. It was found that porous TCP bioceramic could be obtained when 20wt percent bioglass addition and sintered in 1400 degrees celsius for 3 h. Significantly higher compressive strength (9.98 MPa) was achieved in the scaffolds as compared to those produced from tCP power (<3 MPa). The biocompatibility of the scaffold was also estimated.
Resumo:
A series of lithium niobate powders were synthesized by the combustion method at different heating rates. The effect of heating rate on the crystal composition of lithium niobate powders was investigated by powder X-ray diffraction measurements. It has been found that the lithium content in the as-synthesized lithium niobate powders increases with decreasing the heating rate. On the basis of the existed structure-property relationship of lithium niobate single crystals, it was concluded that high quality lithium niobate powders can be effectively synthesized at a lower heating rate (in the range of 5-10 C/min) by the combustion method.
Resumo:
A combustion synthesis of lithium niobate (LN) squares from activated niobium oxide (Nb2 O5.nH2O) and Li2CO3 was studied to understand all the chemical reactions involved, and the nucleation and square-growth mechanisms. It was found that first the lithium ions react with the fuel (urea), then niobium ions of Nb2 O5.nH2O begin a continuous reaction with the fuel to form metal-organic complexes. LN nuclei are formed by the solid-state reaction of Li- and Nb-organic complexes at 430 degrees celcius. Lithium niobate squares are obtained in the crystallization stasge at 700 degrees celcius, which go on the grow into larger squares at 850 degrees celcius because of the agglomeration effect.
Resumo:
How does the image of the future operate upon history, and upon national and individual identities? To what extent are possible futures colonized by the image? What are the un-said futurecratic discourses that underlie the image of the future? Such questions inspired the examination of Japan’s futures images in this thesis. The theoretical point of departure for this examination is Polak’s (1973) seminal research into the theory of the ‘image of the future’ and seven contemporary Japanese texts which offer various alternative images for Japan’s futures, selected as representative of a ‘national conversation’ about the futures of that nation. These seven images of the future are: 1. Report of the Prime Minister’s Commission on Japan’s Goals in the 21st Century—The Frontier Within: Individual Empowerment and Better Governance in the New Millennium, compiled by a committee headed by Japan’s preeminent Jungian psychologist Kawai Hayao (1928-2007); 2. Slow Is Beautiful—a publication by Tsuji Shinichi, in which he re-images Japan as a culture represented by the metaphor of the sloth, concerned with slow and quality-oriented livingry as a preferred image of the future to Japan’s current post-bubble cult of speed and economic efficiency; 3. MuRatopia is an image of the future in the form of a microcosmic prototype community and on-going project based on the historically significant island of Awaji, and established by Japanese economist and futures thinker Yamaguchi Kaoru; 4. F.U.C.K, I Love Japan, by author Tanja Yujiro provides this seven text image of the future line-up with a youth oriented sub-culture perspective on that nation’s futures; 5. IMAGINATION / CREATION—a compilation of round table discussions about Japan’s futures seen from the point of view of Japan’s creative vanguard; 6. Visionary People in a Visionless Country: 21 Earth Connecting Human Stories is a collection of twenty one essays compiled by Denmark born Tokyo resident Peter David Pedersen; and, 7. EXODUS to the Land of Hope, authored by Murakami Ryu, one of Japan’s most prolific and influential writers, this novel suggests a future scenario portraying a massive exodus of Japan’s youth, who, literate with state-of-the-art information and communication technologies (ICTs) move en masse to Japan’s northern island of Hokkaido to launch a cyber-revolution from the peripheries. The thesis employs a Futures Triangle Analysis (FTA) as the macro organizing framework and as such examines both pushes of the present and weights from the past before moving to focus on the pulls to the future represented by the seven texts mentioned above. Inayatullah’s (1999) Causal Layered Analysis (CLA) is the analytical framework used in examining the texts. Poststructuralist concepts derived primarily from the work of Michel Foucault are a particular (but not exclusive) reference point for the analytical approach it encompasses. The research questions which reflect the triangulated analytic matrix are: 1. What are the pushes—in terms of current trends—that are affecting Japan’s futures? 2. What are the historical and cultural weights that influence Japan’s futures? 3. What are the emerging transformative Japanese images of the future discourses, as embodied in actual texts, and what potential do they offer for transformative change in Japan? Research questions one and two are discussed in Chapter five and research question three is discussed in Chapter six. The first two research questions should be considered preliminary. The weights outlined in Chapter five indicate that the forces working against change in Japan are formidable, structurally deep-rooted, wide-spread, and under-recognized as change-adverse. Findings and analyses of the push dimension reveal strong forces towards a potentially very different type of Japan. However it is the seven contemporary Japanese images of the future, from which there is hope for transformative potential, which form the analytical heart of the thesis. In analyzing these texts the thesis establishes the richness of Japan’s images of the future and, as such, demonstrates the robustness of Japan’s stance vis-à-vis the problem of a perceived map-less and model-less future for Japan. Frontier is a useful image of the future, whose hybrid textuality, consisting of government, business, academia, and creative minority perspectives, demonstrates the earnestness of Japan’s leaders in favour of the creation of innovative futures for that nation. Slow is powerful in its aim to reconceptualize Japan’s philosophies of temporality, and build a new kind of nation founded on the principles of a human-oriented and expanded vision of economy based around the core metaphor of slowness culture. However its viability in Japan, with its post-Meiji historical pushes to an increasingly speed-obsessed social construction of reality, could render it impotent. MuRatopia is compelling in its creative hybridity indicative of an advanced IT society, set in a modern day utopian space based upon principles of a high communicative social paradigm, and sustainability. IMAGINATION / CREATION is less the plan than the platform for a new discussion on Japan’s transformation from an econo-centric social framework to a new Creative Age. It accords with emerging discourses from the Creative Industries, which would re-conceive of Japan as a leading maker of meaning, rather than as the so-called guzu, a term referred to in the book meaning ‘laggard’. In total, Love Japan is still the most idiosyncratic of all the images of the future discussed. Its communication style, which appeals to Japan’s youth cohort, establishes it as a potentially formidable change agent in a competitive market of futures images. Visionary People is a compelling image for its revolutionary and subversive stance against Japan’s vision-less political leadership, showing that it is the people, not the futures-making elite or aristocracy who must take the lead and create a new vanguard for the nation. Finally, Murakami’s Exodus cannot be ruled out as a compelling image of the future. Sharing the appeal of Tanja’s Love Japan to an increasingly disenfranchised youth, Exodus portrays a near-term future that is achievable in the here and now, by Japan’s teenagers, using information and communications technologies (ICTs) to subvert leadership, and create utopianist communities based on alternative social principles. The principal contribution from this investigation in terms of theory belongs to that of developing the Japanese image of the future. In this respect, the literature reviews represent a significant compilation, specifically about Japanese futures thinking, the Japanese image of the future, and the Japanese utopia. Though not exhaustive, this compilation will hopefully serve as a useful starting point for future research, not only for the Japanese image of the future, but also for all image of the future research. Many of the sources are in Japanese and their English summations are an added reason to respect this achievement. Secondly, the seven images of the future analysed in Chapter six represent the first time that Japanese image of the future texts have been systematically organized and analysed. Their translation from Japanese to English can be claimed as a significant secondary contribution. What is more, they have been analysed according to current futures methodologies that reveal a layeredness, depth, and overall richness existing in Japanese futures images. Revealing this image-richness has been one of the most significant findings of this investigation, suggesting that there is fertile research to be found from this still under-explored field, whose implications go beyond domestic Japanese concerns, and may offer fertile material for futures thinkers and researchers, Japanologists, social planners, and policy makers.