208 resultados para input-output tables
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
Background The accurate measurement of Cardiac output (CO) is vital in guiding the treatment of critically ill patients. Invasive or minimally invasive measurement of CO is not without inherent risks to the patient. Skilled Intensive Care Unit (ICU) nursing staff are in an ideal position to assess changes in CO following therapeutic measures. The USCOM (Ultrasonic Cardiac Output Monitor) device is a non-invasive CO monitor whose clinical utility and ease of use requires testing. Objectives To compare cardiac output measurement using a non-invasive ultrasonic device (USCOM) operated by a non-echocardiograhically trained ICU Registered Nurse (RN), with the conventional pulmonary artery catheter (PAC) using both thermodilution and Fick methods. Design Prospective observational study. Setting and participants Between April 2006 and March 2007, we evaluated 30 spontaneously breathing patients requiring PAC for assessment of heart failure and/or pulmonary hypertension at a tertiary level cardiothoracic hospital. Methods SCOM CO was compared with thermodilution measurements via PAC and CO estimated using a modified Fick equation. This catheter was inserted by a medical officer, and all USCOM measurements by a senior ICU nurse. Mean values, bias and precision, and mean percentage difference between measures were determined to compare methods. The Intra-Class Correlation statistic was also used to assess agreement. The USCOM time to measure was recorded to assess the learning curve for USCOM use performed by an ICU RN and a line of best fit demonstrated to describe the operator learning curve. Results In 24 of 30 (80%) patients studied, CO measures were obtained. In 6 of 30 (20%) patients, an adequate USCOM signal was not achieved. The mean difference (±standard deviation) between USCOM and PAC, USCOM and Fick, and Fick and PAC CO were small, −0.34 ± 0.52 L/min, −0.33 ± 0.90 L/min and −0.25 ± 0.63 L/min respectively across a range of outputs from 2.6 L/min to 7.2 L/min. The percent limits of agreement (LOA) for all measures were −34.6% to 17.8% for USCOM and PAC, −49.8% to 34.1% for USCOM and Fick and −36.4% to 23.7% for PAC and Fick. Signal acquisition time reduced on average by 0.6 min per measure to less than 10 min at the end of the study. Conclusions In 80% of our cohort, USCOM, PAC and Fick measures of CO all showed clinically acceptable agreement and the learning curve for operation of the non-invasive USCOM device by an ICU RN was found to be satisfactorily short. Further work is required in patients receiving positive pressure ventilation.
Resumo:
In a typical large office block, by far the largest lifetime expense is the salaries of the workers - 84% for salaries compared with : office rent (14%), total energy (1%), and maintenance (1%). The key drive for business is therefore the maximisation of the productivity of the employees as this is the largest cost. Reducing total energy use by 50% will not produce the same financial return as 1% productivity improvement? The aim of the project which led to this review of the literature was to understand as far as possible the state of knowledge internationally about how the indoor environment of buildings does influence occupants and the impact this influence may have on the total cost of ownership of buildings. Therefore one of the main focus areas for the literature has been identifying whether there is a link between productivity and health of building occupants and the indoor environment. Productivity is both easy to define - the ratio of output to input - but at the same time very hard to measure in a relatively small environment where individual contributions can influence the results, in particular social interactions. Health impacts from a building environment are also difficult to measure well, as establishing casual links between the indoor environment and a particular health issue can be very difficult. All of those issues are canvassed in the literature reported here. Humans are surprisingly adaptive to different physical environments, but the workplace should not test the limits of human adaptability. Physiological models of stress, for example, accept that the body has a finite amount of adaptive energy available to cope with stress. The importance of, and this projects' focus on, the physical setting within the integrated system of high performance workplaces, means this literature survey explores research which has been undertaken on both physical and social aspects of the built environment. The literature has been largely classified in several different ways, according to the classification scheme shown below. There is still some inconsistency in the use of keywords, which is being addressed and greater uniformity will be developed for a CD version of this literature, enabling searching using this classification scheme.
Resumo:
Reinforced concrete structures are susceptible to a variety of deterioration mechanisms due to creep and shrinkage, alkali-silica reaction (ASR), carbonation, and corrosion of the reinforcement. The deterioration problems can affect the integrity and load carrying capacity of the structure. Substantial research has been dedicated to these various mechanisms aiming to identify the causes, reactions, accelerants, retardants and consequences. This has improved our understanding of the long-term behaviour of reinforced concrete structures. However, the strengthening of reinforced concrete structures for durability has to date been mainly undertaken after expert assessment of field data followed by the development of a scheme to both terminate continuing degradation, by separating the structure from the environment, and strengthening the structure. The process does not include any significant consideration of the residual load-bearing capacity of the structure and the highly variable nature of estimates of such remaining capacity. Development of performance curves for deteriorating bridge structures has not been attempted due to the difficulty in developing a model when the input parameters have an extremely large variability. This paper presents a framework developed for an asset management system which assesses residual capacity and identifies the most appropriate rehabilitation method for a given reinforced concrete structure exposed to aggressive environments. In developing the framework, several industry consultation sessions have been conducted to identify input data required, research methodology and output knowledge base. Capturing expert opinion in a useable knowledge base requires development of a rule based formulation, which can subsequently be used to model the reliability of the performance curve of a reinforced concrete structure exposed to a given environment.
Resumo:
An estimation of costs for maintenance and rehabilitation is subject to variation due to the uncertainties of input parameters. This paper presents the results of an analysis to identify input parameters that affect the prediction of variation in road deterioration. Road data obtained from 1688 km of a national highway located in the tropical northeast of Queensland in Australia were used in the analysis. Data were analysed using a probability-based method, the Monte Carlo simulation technique and HDM-4’s roughness prediction model. The results of the analysis indicated that among the input parameters the variability of pavement strength, rut depth, annual equivalent axle load and initial roughness affected the variability of the predicted roughness. The second part of the paper presents an analysis to assess the variation in cost estimates due to the variability of the overall identified critical input parameters.
Resumo:
Channel measurements and simulations have been carried out to observe the effects of pedestrian movement on multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) channel capacity. An in-house built MIMO-OFDM packet transmission demonstrator equipped with four transmitters and four receivers has been utilized to perform channel measurements at 5.2 GHz. Variations in the channel capacity dynamic range have been analysed for 1 to 10 pedestrians and different antenna arrays (2 × 2, 3 × 3 and 4 × 4). Results show a predicted 5.5 bits/s/Hz and a measured 1.5 bits/s/Hz increment in the capacity dynamic range with the number of pedestrian and the number of antennas in the transmitter and receiver array.
Resumo:
We investigate Multiple-Input and Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems behavior in indoor populated environments that have line-of-site (LoS) between transmitter and receiver arrays. The in-house built MIMO-OFDM packet transmission demonstrator, equipped with four transmitters and four receivers, has been utilized to perform channel measurements at 5.2 GHz. Measurements have been performed using 0 to 3 pedestrians with different antenna arrays (2 £ 2, 3 £ 3 and 4 £ 4). The maximum average capacity for the 2x2 deterministic Fixed SNR scenario is 8.5 dB compared to the 4x4 deterministic scenario that has a maximum average capacity of 16.2 dB, thus an increment of 8 dB in average capacity has been measured when the array size increases from 2x2 to 4x4. In addition a regular variation has been observed for Random scenarios compared to the deterministic scenarios. An incremental trend in average channel capacity for both deterministic and random pedestrian movements has been observed with increasing number of pedestrian and antennas. In deterministic scenarios, the variations in average channel capacity are more noticeable than for the random scenarios due to a more prolonged and controlled body-shadowing effect. Moreover due to the frequent Los blocking and fixed transmission power a slight decrement have been observed in the spread between the maximum and minimum capacity with random fixed Tx power scenario.
Resumo:
Both creative industries and innovation are slippery fish to handle conceptually, to say nothing of their relationship. This paper faces, first, the problems of definitions and data that can bedevil clear analysis of the creative industries. It then presents a method of data generation and analysis that has been developed to address these problems while providing an evidence pathway supporting the movement in policy thinking from creative output (through industry sectors) to creative input to the broader economy (through a focus on occupations/activity). Facing the test of policy relevance, this work has assisted in moving the ongoing debates about the creative industries toward innovation thinking by developing the concept of creative occupations as input value. Creative inputs as 'enablers' arguably has parallels with the way ICTs have been shown to be broad enablers of economic growth. We conclude with two short instantiations of the policy relevance of this concept: design as a creative input; and creative human capital and education.
Resumo:
A recent article in the Journal of Science and Medicine in Sport by Chapman et al.1 reported data from an empirical investigation comparing lower extremity joint motions, joint coordination and muscle recruitment in expert and novice cyclists. 3D kinematic and intramuscular electromyographic (EMG) analyses revealed no differences between expert and novice cyclists for normalised joint angles and velocities of the pelvis, hip, knee and ankle. However, significant differences in the strength of sagittal plane kinematics for hip–ankle and knee–ankle joint couplings were reported, with expert cyclists displaying tighter coupling relationships than novice cyclists. Furthermore, significant differences between expert and novice cyclists for all muscle recruitment parameters, except timing of peak EMG amplitude, were also reported.
Resumo:
This paper presents dynamic hysteresis band height control to reduce the overshoot and undershoot issue on output voltage caused by load change. The converters in this study are Boost and Positive Buck-Boost (PBB) converters. PBB has been controlled to work in a step up conversion and avoid overshoot when load is changed. Simulation and experimental results have been presented to verify the proposed method.
Resumo:
Purpose – The purpose of this paper is to examine the use of bid information, including both price and non-price factors in predicting the bidder’s performance. Design/methodology/approach – The practice of the industry was first reviewed. Data on bid evaluation and performance records of the successful bids were then obtained from the Hong Kong Housing Department, the largest housing provider in Hong Kong. This was followed by the development of a radial basis function (RBF) neural network based performance prediction model. Findings – It is found that public clients are more conscientious and include non-price factors in their bid evaluation equations. With the input variables used the information is available at the time of the bid and the output variable is the project performance score recorded during work in progress achieved by the successful bidder. It was found that past project performance score is the most sensitive input variable in predicting future performance. Research limitations/implications – The paper shows the inadequacy of using price alone for bid award criterion. The need for a systemic performance evaluation is also highlighted, as this information is highly instrumental for subsequent bid evaluations. The caveat for this study is that the prediction model was developed based on data obtained from one single source. Originality/value – The value of the paper is in the use of an RBF neural network as the prediction tool because it can model non-linear function. This capability avoids tedious ‘‘trial and error’’ in deciding the number of hidden layers to be used in the network model. Keywords Hong Kong, Construction industry, Neural nets, Modelling, Bid offer spreads Paper type Research paper
Resumo:
Successful project delivery of construction projects depends on many factors. With regard to the construction of a facility, selecting a competent contractor for the job is paramount. As such, various approaches have been advanced to facilitate tender award decisions. Essentially, this type of decision involves the prediction of a bidderÕs performance based on information available at the tender stage. A neural network based prediction model was developed and presented in this paper. Project data for the study were obtained from the Hong Kong Housing Department. Information from the tender reports was used as input variables and performance records of the successful bidder during construction were used as output variables. It was found that the networks for the prediction of performance scores for Works gave the highest hit rate. In addition, the two most sensitive input variables toward such prediction are ‘‘Difference between Estimate’’ and ‘‘Difference between the next closest bid’’. Both input variables are price related, thus suggesting the importance of tender sufficiency for the assurance of quality production.
Resumo:
Aim To estimate the economic consequences of pressure ulcers attributable to malnutrition. Method Statistical models were developed to predict the number of cases of pressure ulcer, associated bed days lost and the dollar value of these losses in public hospitals in 2002/2003 in Queensland, Australia. The following input parameters were specified and appropriate probability distributions fitted • Number of at risk discharges per annum • Incidence rate for pressure ulcer • Attributable fraction of malnutrition in the development of pressure ulcer • Independent effect of pressure ulcer on length of hospital stay • Opportunity cost of hospital bed day One thousand random re-samples were made and the results expressed as (output) probabilistic distributions. Results The model predicts a mean 16060 (SD 5 671) bed days lost and corresponding mean economic cost of AU$12 968 668 (SD AU$4 924 148) (EUROS 6 925 268 SD 2 629 495; US$ 7 288 391 SD 2 767 371) of pressure ulcer attributable to malnutrition in 2002/2003 in public hospitals in Queensland, Australia. Conclusion The cost of pressure ulcer attributable to malnutrition in bed days and dollar terms are substantial. The model only considers costs of increased length of stay associated with pressure ulcer and not other factors associated with care.