75 resultados para glass-ionomer cement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an experimental investigation of the flexural and shear bond characteristics of thin layer polymer cement mortared concrete masonry. It is well known that the bond characteristics of masonry depend upon the mortar type, the techniques of dispersion of mortar and the surface texture of concrete blocks; there exists an abundance of literature on the conventional 10 mm thick cement mortared masonry bond; however, 1-4 mm thick polymer cement mortared masonry bond is not yet well researched. This paper reports a study on the examination of the effect of mortar compositions, dispersion methods and unit surface textures to the flexural and shear bond characteristics of thin layer mortared concrete masonry. A non-contact digital image correlation method was adopted for the measurement of strains at the unit-mortar interface in this research. All mortar joints have been carefully prepared to ensure achievement of the desired thin layer mortar thickness on average. The results exhibit that the bond strength of thin mortar layered concrete masonry with polymer cement mortar is higher than that of the conventional masonry; moreover the unit surface texture and the mortar dispersion methods are found to have significant influence on the flexural and shear bond characteristics. From the experimental results, a correlation between the flexural and the shear bond strengths has been determined and is presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we fabricate and characterise bioactive composite scaffolds for bone tissue engineering applications. 45S5 Bioglass® (45S5) or strontium-substituted bioactive glass (SrBG) were incorporated into polycaprolactone (PCL) and fabricated into 3D bioactive composite scaffolds utilising additive manufacturing technology. We show that composite scaffolds (PCL/45S5 and PCL/SrBG) can be reproducibly manufactured with a scaffold morphology highly resembling that of PCL scaffolds. Additionally, micro-CT analysis reveals BG particles were homogeneously distributed throughout the scaffolds. Mechanical data suggested that PCL/45S5 and PCL/SrBG composite scaffolds have higher compressive Young’s modulus compared to PCL scaffolds at similar porosity (~75%). After 1 day in accelerated degradation conditions using 5M NaOH, PCL/SrBG, PCL/45S5 and PCL lost 48.6 ±3.8%, 12.1 ±1% and 1.6 ±1% of its original mass, respectively. In vitro studies were conducted using MC3T3 cells under normal and osteogenic conditions. All scaffolds were shown to be non-cytotoxic, and supported cell attachment and proliferation. Our results also indicate that the inclusion of bioactive glass (BG) promotes precipitation of calcium phosphate on the scaffold surfaces which leads to earlier cell differentiation and matrix mineralisation when compared to PCL scaffolds. However, as indicated by ALP activity, no significant difference in osteoblast differentiation was found between PCL/45S5 and PCL/SrBG scaffolds. These results suggest that PCL/45S5 and PCL/SrBG composite scaffold shows potential as a next generation bone scaffold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycaprolactone (PCL) is a resorbable polymer used extensively in bone tissue engineering owing to good structural properties and processability. Strontium substituted bioactive glass (SrBG) has the ability to promote osteogenesis and may be incorporated into scaffolds intended for bone repair. Here we describe for the first time, the development of a PCL-SrBG composite scaffold incorporating 10% (weight) of SrBG particles into PCL bulk, produced by the technique of melt-electrospinning. We show that we are able to reproducibly manufacture composite scaffolds with an interconnected porous structure and, furthermore, these scaffolds were demonstrated to be non-cytotoxic in vitro. Ions present in the SrBG component were shown to dissolve into cell culture media and promoted precipitation of a calcium phosphate layer on the scaffold surface which in turn led to noticeably enhanced alkaline phosphatase activity in MC3T3-E1 cells compared to PLC-only scaffolds. These results suggest that melt-electrospun PCL-SrBG composite scaffolds show potential to become effective bone graft substitutes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper illustrates the use of finite element (FE) technique to investigate the behaviour of laminated glass (LG) panels under blast loads. Two and three dimensional (2D and 3D) modelling approaches available in LS-DYNA FE code to model LG panels are presented. Results from the FE analysis for mid-span deflection and principal stresses compared well with those from large deflection plate theory. The FE models are further validated using the results from a free field blast test on a LG panel. It is evident that both 2D and 3D LG models predict the experimental results with reasonable accuracy. The 3D LG models give slightly more accurate results but require considerably more computational time compared to the 2D LG models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a rigorous and a reliable analytical procedure using finite element (FE) techniques to study the blast response of laminated glass (LG) panel and predict the failure of its components. The 1st principal stress (σ11) is used as the failure criterion for glass and the von mises stress (σv) is used for the interlayer and sealant joints. The results from the FE analysis for mid-span deflection, energy absorption and the stresses at critical locations of glass, interlayer and structural sealant are presented in the paper. These results compared well with those obtained from a free field blast test reported in the literature. The tensile strength (T) of the glass has a significant influence on the behaviour of the LG panel and should be treated carefully in the analysis. The glass panes absorb about 80% of the blast energy for the treated blast load and this should be minimised in the design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer biomaterials have been widely used for bone replacement/regeneration because of their unique mechanical properties and workability. Their inherent low bioactivity makes them lack osseointegration with host bone tissue. For this reason, bioactive inorganic particles have been always incorporated into the matrix of polymers to improve their bioactivity. However, mixing inorganic particles with polymers always results in inhomogeneity of particle distribution in polymer matrix with limited bioactivity. This study sets out to apply the pulsed laser deposition (PLD) technique to prepare uniform akermanite (Ca2MgSi2O7, AKT) glass nanocoatings on the surface of two polymers (non-degradable polysulfone (PSU) and degradable polylactic acid (PDLLA)) in order to improve their surface osteogenic and angiogenic activity. The results show that a uniform nanolayer composed of amorphous AKT particles (∼30nm) of thickness 130nm forms on the surface of both PSU and PDLLA films with the PLD technique. The prepared AKT-PSU and AKT-PDLLA films significantly improved the surface roughness, hydrophilicity, hardness and apatite mineralization, compared with pure PSU and PDLLA, respectively. The prepared AKT nanocoatings distinctively enhance the alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, OPN and Col I) of bone-forming cells on both PSU and PDLLA films. Furthermore, AKT nanocoatings on two polymers improve the attachment, proliferation, VEGF secretion and expression of proangiogenic factors and their receptors of human umbilical vein endothelial cells (HUVEC). The results suggest that PLD-prepared bioceramic nanocoatings are very useful for enhancing the physicochemical, osteogenic and angiogenic properties of both degradable and non-degradable polymers for application in bone replacement/regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bond characteristics of masonry are partly affected by the type of mortar used, the techniques of dispersion of mortar and the surface texture of the concrete blocks. Additionally it is understood from the studies on conventional masonry, the bond characteristics are influenced by masonry age and curing methods as well as dryness/dampness at the time of testing. However, all these effects on bond for thin bed masonry containing polymer cement mortar are not well researched. Therefore, the effect of ageing and curing method on bond strength of masonry made with polymer cement mortar was experimentally investigated as part of an ongoing bond strength research program on thin bed concrete masonry at Queensland University of technology. This paper presents the experimental investigation of the flexural and shears bond characteristics of thin bed concrete masonry of varying age/ curing methods. Since, the polymer cement mortar is commonly used in thin bed masonry; bond development through two different curing conditions (dry/wet) was investigated in this research work. The results exhibit that the bond strength increases with the age under the wet and dry curing conditions; dry curing produce stronger bond and is considered as an advantage towards making this form of thin bed masonry better sustainable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For many years materials such as quarried sand, anthracite, and granular activated carbon have been the principal media-products traditionally used in water and wastewater filtration plants. Pebble Matrix Filtration (PMF) is a novel non-chemical, sustainable pre-treatment method of protecting Slow Sand Filters (SSF) from high turbidity during heavy monsoon periods. PMF uses sand and pebbles as the filter media and the sustainability of this new technology might depend on availability and supply of pebbles and sand, both finite resources. In many countries there are two principal methods of obtaining pebbles and sand, namely dredging from rivers and beaches, and due to the scarcity of these resources in some countries the cost of pebbles is often 4-5 times higher than that of sand. In search for an alternative medium to pebbles after some preliminary laboratory tests conducted in Colombo-Sri Lanka, Poznan-Poland and Cambridge-UK, a 100-year-old brick factory near Sudbury, Suffolk, has produced hand-made clay pebbles satisfying the PMF quality requirements. As an alternative to sand, crushed recycled glass from a UK supplier was used and the PMF system was operated together with hand-made clay balls in the laboratory for high turbidity removal effectively. The results of laboratory experiments with alternative media are presented in this paper. There are potential opportunities for recycled crushed glass and clay ball manufacturing processes in some countries where they can be used as filter media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the boundaries between public and private, human and technology, digital and social, mediated and natural, online and offline become increasingly blurred in modern techno-social hybrid societies, sociology as a discipline needs to adapt and adopt new ways of accounting for these digital cultures. In this paper I use the social networking site Pinterest to demonstrate how people today are shaped by, and in turn shape, the digital tools they are assembled with. Digital sociology is emerging as a sociological subdiscipline that engages with the convergence of the digital and the social. However, there seems to be a focus on developing new methods for studying digital social life, yet a neglect of concrete explorations of its culture. I argue for the need for critical socio-cultural ‘thick description’ to account for the interrelations between humans and technologies in modern digitally mediated cultures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Creep and shrinkage behaviour of an ultra lightweight cement composite (ULCC) up to 450 days was evaluated in comparison with those of a normal weight aggregate concrete (NWAC) and a lightweight aggregate concrete (LWAC) with similar 28-day compressive strength. The ULCC is characterized by low density < 1500 kg/m3 and high compressive strength about 60 MPa. Autogenous shrinkage increased rapidly in the ULCC at early-age and almost 95% occurred prior to the start of creep test at 28 days. Hence, majority of shrinkage of the ULCC during creep test was drying shrinkage. Total shrinkage of the ULCC during the 450-day creep test was the lowest compared to the NWAC and LWAC. However, corresponding total creep in the ULCC was the highest with high proportion attributed to basic creep (≥ ~90%) and limited drying creep. The high creep of the ULCC is likely due to its low elastic modulus. Specific creep of the ULCC was similar to that of the NWAC, but more than 80% higher than the LWAC. Creep coefficient of the ULCC was about 47% lower than that of the NWAC but about 18% higher than that of the LWAC. Among five creep models evaluated which tend to over-estimate the creep coefficient of the ULCC, EC2 model gives acceptable prediction within +25% deviations. The EC2 model may be used as a first approximate for the creep of ULCC in the designs of steel-concrete composites or sandwich structures in the absence of other relevant creep data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a comprehensive numerical procedure to treat the blast response of laminated glass (LG) panels and studies the influence of important material parameters. Post-crack behaviour of the LG panel and the contribution of the interlayer towards blast resistance are treated. Modelling techniques are validated by comparing with existing experimental results. Findings indicate that the tensile strength of glass considerably influences the blast response of LG panels while the interlayer material properties have a major impact on the response under higher blast loads. Initially, glass panes absorb most of the blast energy, but after the glass breaks, interlayer deforms further and absorbs most of the blast energy. LG panels should be designed to fail by tearing of the interlayer rather than failure at the supports to achieve a desired level of protection. From this aspect, material properties of glass, interlayer and sealant joints play important roles, but unfortunately they are not accounted for in the current design standards. The new information generated in this paper will enhance the capabilities of engineers to better design LG panels under blast loads and use better materials to improve the blast response of LG panels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY: Recently, the use of the pharmacological agent strontium ranelate has come to prominence for the treatment of osteoporosis. While much investigation is focused on preventing disease progression, here we fabricate strontium-containing scaffolds and show that they enhance bone defect healing in the femurs of rats induced by ovariectomy. INTRODUCTION: Recently, the use of the pharmacological agent strontium ranelate has come to prominence for the treatment of osteoporosis due to its ability to prevent bone loss in osteoporotic patients. Although much emphasis has been placed on using pharmacological agents for the prevention of disease, much less attention has been placed on the construction of biomaterials following osteoporotic-related fracture. The aim of the present study was to incorporate bioactive strontium (Sr) trace element into mesoporous bioactive glass (MBG) scaffolds and to investigate their in vivo efficacy for bone defect healing in the femurs of rats induced by ovariectomy. METHODS: In total, 30 animals were divided into five groups as follows: (1) empty defect (control), (2) empty defects with estrogen replacement therapy, (3) defects filled with MBG scaffolds alone, (4) defects filled with MBG + estrogen replacement therapy, and (5) defects filled with strontium-incorporated mesopore-bioglass (Sr-MBG) scaffolds. RESULTS: The two groups demonstrating the highest levels of new bone formation were the defects treated with MBG + estrogen replacement therapy and the defects receiving Sr-MBG scaffolds as assessed by μ-CT and histological analysis. Furthermore, Sr scaffolds had a reduced number of tartrate-resistant acid phosphatase-positive cells when compared to other modalities. CONCLUSION: The results from the present study demonstrate that the local release of Sr from bone scaffolds may improve fracture repair. Future large animal models are necessary to investigate the future relationship of Sr incorporation into biomaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m−2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%–73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.