57 resultados para forecast error


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time series classification has been extensively explored in many fields of study. Most methods are based on the historical or current information extracted from data. However, if interest is in a specific future time period, methods that directly relate to forecasts of time series are much more appropriate. An approach to time series classification is proposed based on a polarization measure of forecast densities of time series. By fitting autoregressive models, forecast replicates of each time series are obtained via the bias-corrected bootstrap, and a stationarity correction is considered when necessary. Kernel estimators are then employed to approximate forecast densities, and discrepancies of forecast densities of pairs of time series are estimated by a polarization measure, which evaluates the extent to which two densities overlap. Following the distributional properties of the polarization measure, a discriminant rule and a clustering method are proposed to conduct the supervised and unsupervised classification, respectively. The proposed methodology is applied to both simulated and real data sets, and the results show desirable properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bayesian networks (BNs) are graphical probabilistic models used for reasoning under uncertainty. These models are becoming increasing popular in a range of fields including ecology, computational biology, medical diagnosis, and forensics. In most of these cases, the BNs are quantified using information from experts, or from user opinions. An interest therefore lies in the way in which multiple opinions can be represented and used in a BN. This paper proposes the use of a measurement error model to combine opinions for use in the quantification of a BN. The multiple opinions are treated as a realisation of measurement error and the model uses the posterior probabilities ascribed to each node in the BN which are computed from the prior information given by each expert. The proposed model addresses the issues associated with current methods of combining opinions such as the absence of a coherent probability model, the lack of the conditional independence structure of the BN being maintained, and the provision of only a point estimate for the consensus. The proposed model is applied an existing Bayesian Network and performed well when compared to existing methods of combining opinions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bounds on the expectation and variance of errors at the output of a multilayer feedforward neural network with perturbed weights and inputs are derived. It is assumed that errors in weights and inputs to the network are statistically independent and small. The bounds obtained are applicable to both digital and analogue network implementations and are shown to be of practical value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integration of biometrics is considered as an attractive solution for the issues associated with password based human authentication as well as for secure storage and release of cryptographic keys which is one of the critical issues associated with modern cryptography. However, the widespread popularity of bio-cryptographic solutions are somewhat restricted by the fuzziness associated with biometric measurements. Therefore, error control mechanisms must be adopted to make sure that fuzziness of biometric inputs can be sufficiently countered. In this paper, we have outlined such existing techniques used in bio-cryptography while explaining how they are deployed in different types of solutions. Finally, we have elaborated on the important facts to be considered when choosing appropriate error correction mechanisms for a particular biometric based solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melanopsin containing intrinsically photosensitive Retinal Ganglion cells (ipRGCs) mediate the pupil light reflex (PLR) during light onset and at light offset (the post-illumination pupil response, PIPR). Recent evidence shows that the PLR and PIPR can provide non-invasive, objective markers of age-related retinal and optic nerve disease, however there is no consensus on the effects of healthy ageing or refractive error on the ipRGC mediated pupil function. Here we isolated melanopsin contributions to the pupil control pathway in 59 human participants with no ocular pathology across a range of ages and refractive errors. We show that there is no effect of age or refractive error on ipRGC inputs to the human pupil control pathway. The stability of the ipRGC mediated pupil response across the human lifespan provides a functional correlate of their robustness observed during ageing in rodent models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

So far, most Phase II trials have been designed and analysed under a frequentist framework. Under this framework, a trial is designed so that the overall Type I and Type II errors of the trial are controlled at some desired levels. Recently, a number of articles have advocated the use of Bavesian designs in practice. Under a Bayesian framework, a trial is designed so that the trial stops when the posterior probability of treatment is within certain prespecified thresholds. In this article, we argue that trials under a Bayesian framework can also be designed to control frequentist error rates. We introduce a Bayesian version of Simon's well-known two-stage design to achieve this goal. We also consider two other errors, which are called Bayesian errors in this article because of their similarities to posterior probabilities. We show that our method can also control these Bayesian-type errors. We compare our method with other recent Bayesian designs in a numerical study and discuss implications of different designs on error rates. An example of a clinical trial for patients with nasopharyngeal carcinoma is used to illustrate differences of the different designs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a wide class of semi-Markov decision processes the optimal policies are expressible in terms of the Gittins indices, which have been found useful in sequential clinical trials and pharmaceutical research planning. In general, the indices can be approximated via calibration based on dynamic programming of finite horizon. This paper provides some results on the accuracy of such approximations, and, in particular, gives the error bounds for some well known processes (Bernoulli reward processes, normal reward processes and exponential target processes).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decision of Henry J in Ginn & Anor v Ginn; ex parte Absolute Law Lawyers & Attorneys [2015] QSC 49 provides clarification of the approach to be taken on a default costs assessment under r708 of the Uniform Civil Procedure Rules 1999

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 59-year-old man was mistakenly prescribed Slow-Na instead of Slow-K due to incorrect selection from a drop-down list in the prescribing software. This error was identified by a pharmacist during a home medicine review (HMR) before the patient began taking the supplement. The reported error emphasizes the need for vigilance due to the emergence of novel look-alike, sound-alike (LASA) drug pairings. This case highlights the important role of pharmacists in medication safety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents an innovative approach to modelling the causal relationships of human errors in rail crack incidents (RCI) from a managerial perspective. A Bayesian belief network is developed to model RCI by considering the human errors of designers, manufactures, operators and maintainers (DMOM) and the causal relationships involved. A set of dependent variables whose combinations express the relevant functions performed by each DMOM participant is used to model the causal relationships. A total of 14 RCI on Hong Kong’s mass transit railway (MTR) from 2008 to 2011 are used to illustrate the application of the model. Bayesian inference is used to conduct an importance analysis to assess the impact of the participants’ errors. Sensitivity analysis is then employed to gauge the effect the increased probability of occurrence of human errors on RCI. Finally, strategies for human error identification and mitigation of RCI are proposed. The identification of ability of maintainer in the case study as the most important factor influencing the probability of RCI implies the priority need to strengthen the maintenance management of the MTR system and that improving the inspection ability of the maintainer is likely to be an effective strategy for RCI risk mitigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality of short-term electricity load forecasting is crucial to the operation and trading activities of market participants in an electricity market. In this paper, it is shown that a multiple equation time-series model, which is estimated by repeated application of ordinary least squares, has the potential to match or even outperform more complex nonlinear and nonparametric forecasting models. The key ingredient of the success of this simple model is the effective use of lagged information by allowing for interaction between seasonal patterns and intra-day dependencies. Although the model is built using data for the Queensland region of Australia, the method is completely generic and applicable to any load forecasting problem. The model’s forecasting ability is assessed by means of the mean absolute percentage error (MAPE). For day-ahead forecast, the MAPE returned by the model over a period of 11 years is an impressive 1.36%. The forecast accuracy of the model is compared with a number of benchmarks including three popular alternatives and one industrial standard reported by the Australia Energy Market Operator (AEMO). The performance of the model developed in this paper is superior to all benchmarks and outperforms the AEMO forecasts by about a third in terms of the MAPE criterion.