146 resultados para flight optimisation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a Genetic Algorithms (GA) approach to search the optimized path for a class of transportation problems. The formulation of the problems for suitable application of GA will be discussed. Exchanging genetic information in the sense of neighborhoods will be introduced for generation reproduction. The performance of the GA will be evaluated by computer simulation. The proposed algorithm use simple coding with population size 1 converged in reasonable optimality within several minutes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chapter investigates Shock Control Bumps (SCB) on a Natural Laminar Flow (NLF) aerofoil; RAE 5243 for Active Flow Control (AFC). A SCB approach is used to decelerate supersonic flow on the suction/pressure sides of transonic aerofoil that leads delaying shock occurrence or weakening of shock strength. Such an AFC technique reduces significantly the total drag at transonic speeds. This chapter considers the SCB shape design optimisation at two boundary layer transition positions (0 and 45%) using an Euler software coupled with viscous boundary layer effects and robust Evolutionary Algorithms (EAs). The optimisation method is based on a canonical Evolution Strategy (ES) algorithm and incorporates the concepts of hierarchical topology and parallel asynchronous evaluation of candidate solution. Two test cases are considered with numerical experiments; the first test deals with a transition point occurring at the leading edge and the transition point is fixed at 45% of wing chord in the second test. Numerical results are presented and it is demonstrated that an optimal SCB design can be found to significantly reduce transonic wave drag and improves lift on drag (L/D) value when compared to the baseline aerofoil design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Future air traffic management concepts often involve the proposal of automated separation management algorithms that replaces human air traffic controllers. This paper proposes a new type of automated separation management algorithm (based on the satisficing approach) that utilizes inter-aircraft communication and a track file manager (or bank of Kalman filters) that is capable of resolving conflicts during periods of communication failure. The proposed separation management algorithm is tested in a range of flight scenarios involving during periods of communication failure, in both simulation and flight test (flight tests were conducted as part of the Smart Skies project). The intention of the conducted flight tests was to investigate the benefits of using inter-aircraft communication to provide an extra layer of safety protection in support air traffic management during periods of failure of the communication network. These benefits were confirmed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes to improve spoken term detection (STD) accuracy by optimising the Figure of Merit (FOM). In this article, the index takes the form of phonetic posterior-feature matrix. Accuracy is improved by formulating STD as a discriminative training problem and directly optimising the FOM, through its use as an objective function to train a transformation of the index. The outcome of indexing is then a matrix of enhanced posterior-features that are directly tailored for the STD task. The technique is shown to improve the FOM by up to 13% on held-out data. Additional analysis explores the effect of the technique on phone recognition accuracy, examines the actual values of the learned transform, and demonstrates that using an extended training data set results in further improvement in the FOM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectrum sensing optimisation techniques maximise the efficiency of spectrum sensing while satisfying a number of constraints. Many optimisation models consider the possibility of the primary user changing activity state during the secondary user's transmission period. However, most ignore the possibility of activity change during the sensing period. The observed primary user signal during sensing can exhibit a duty cycle which has been shown to severely degrade detection performance. This paper shows that (a) the probability of state change during sensing cannot be neglected and (b) the true detection performance obtained when incorporating the duty cycle of the primary user signal can deviate significantly from the results expected with the assumption of no such duty cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractures of long bones are sometimes treated using various types of fracture fixation devices including internal plate fixators. These are specialised plates which are used to bridge the fracture gap(s) whilst anatomically aligning the bone fragments. The plate is secured in position by screws. The aim of such a device is to support and promote the natural healing of the bone. When using an internal fixation device, it is necessary for the clinician to decide upon many parameters, for example, the type of plate and where to position it; how many and where to position the screws. While there have been a number of experimental and computational studies conducted regarding the configuration of screws in the literature, there is still inadequate information available concerning the influence of screw configuration on fracture healing. Because screw configuration influences the amount of flexibility at the area of fracture, it has a direct influence on the fracture healing process. Therefore, it is important that the chosen screw configuration does not inhibit the healing process. In addition to the impact on the fracture healing process, screw configuration plays an important role in the distribution of stresses in the plate due to the applied loads. A plate that experiences high stresses is prone to early failure. Hence, the screw configuration used should not encourage the occurrence of high stresses. This project develops a computational program in Fortran programming language to perform mathematical optimisation to determine the screw configuration of an internal fixation device within constraints of interfragmentary movement by minimising the corresponding stress in the plate. Thus, the optimal solution suggests the positioning and number of screws which satisfies the predefined constraints of interfragmentary movements. For a set of screw configurations the interfragmentary displacement and the stress occurring in the plate were calculated by the Finite Element Method. The screw configurations were iteratively changed and each time the corresponding interfragmentary displacements were compared with predefined constraints. Additionally, the corresponding stress was compared with the previously calculated stress value to determine if there was a reduction. These processes were continued until an optimal solution was achieved. The optimisation program has been shown to successfully predict the optimal screw configuration in two cases. The first case was a simplified bone construct whereby the screw configuration solution was comparable with those recommended in biomechanical literature. The second case was a femoral construct, of which the resultant screw configuration was shown to be similar to those used in clinical cases. The optimisation method and programming developed in this study has shown that it has potential to be used for further investigations with the improvement of optimisation criteria and the efficiency of the program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are large uncertainties in the aerothermodynamic modelling of super-orbital re-entry which impact the design of spacecraft thermal protection systems (TPS). Aspects of the thermal environment of super-orbital re-entry flows can be simulated in the laboratory using arc- and plasma jet facilities and these devices are regularly used for TPS certification work [5]. Another laboratory device which is capable of simulating certain critical features of both the aero and thermal environment of super-orbital re-entry is the expansion tube, and three such facilities have been operating at the University of Queensland in recent years[10]. Despite some success, wind tunnel tests do not achieve full simulation, however, a virtually complete physical simulation of particular re-entry conditions can be obtained from dedicated flight testing, and the Apollo era FIRE II flight experiment [2] is the premier example which still forms an important benchmark for modern simulations. Dedicated super-orbital flight testing is generally considered too expensive today, and there is a reluctance to incorporate substantial instrumentation for aerothermal diagnostics into existing missions since it may compromise primary mission objectives. An alternative approach to on-board flight measurements, with demonstrated success particularly in the ‘Stardust’ sample return mission, is remote observation of spectral emissions from the capsule and shock layer [8]. JAXA’s ‘Hayabusa’ sample return capsule provides a recent super-orbital reentry example through which we illustrate contributions in three areas: (1) physical simulation of super-orbital re-entry conditions in the laboratory; (2) computational simulation of such flows; and (3) remote acquisition of optical emissions from a super-orbital re entry event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of Game Strategies (GS) have been developed in past decades. They have been used in the fields of economics, engineering, computer science and biology due to their efficiency in solving design optimization problems. In addition, research in multi-objective (MO) and multidisciplinary design optimization (MDO) has focused on developing robust and efficient optimization methods to produce a set of high quality solutions with low computational cost. In this paper, two optimization techniques are considered; the first optimization method uses multi-fidelity hierarchical Pareto optimality. The second optimization method uses the combination of two Game Strategies; Nash-equilibrium and Pareto optimality. The paper shows how Game Strategies can be hybridised and coupled to Multi-Objective Evolutionary Algorithms (MOEA) to accelerate convergence speed and to produce a set of high quality solutions. Numerical results obtained from both optimization methods are compared in terms of computational expense and model quality. The benefits of using Hybrid-Game Strategies are clearly demonstrated