66 resultados para fetal membranes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our group has developed an ovine model of deep dermal, partial-thickness burn where the fetus heals scarlessly and the lamb heals with scar. The comparison of collagen structure between these two different mechanisms of healing may elucidate the process of scarless wound healing. Picrosirius staining followed by polarized light microscopy was used to visualize collagen fibers, with digital capture and analysis. Collagen deposition increased with fetal age and the fibers became thicker, changing from green (type III collagen) to yellow/red (type I collagen). The ratio of type III collagen to type I was high in the fetus (166), whereas the lamb had a much lower ratio (0.2). After burn, the ratios of type III to type I collagen did not differ from those in control skin for either fetus or lamb. The fetal tissue maintained normal tissue architecture after burn while the lamb tissue showed irregular collagen organization. In conclusion, the type or amount of collagen does not alter significantly after injury. Tissue architecture differed between fetal and lamb tissue, suggesting that scar development is related to collagen cross-linking or arrangement. This study indicates that healing in the scarless fetal wound is representative of the normal fetal growth pattern, rather than a "response" to burn injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Burn injury is associated with disabling scar formation which impacts on many aspects of the patient's life. Previously we have shown that the fetus heals a deep dermal burn in a scarless fashion. Amniotic membrane (AM) is the outermost fetal tisue and has beeen used as a dressing in thermal injuries, though there is little data to support this use. To assess the efficacy of AM in scar minimisation after deep dermal burn wound, we conducted a randomised controlled study in the 1-month lamb. Lambs were delivered by caesarian section and the amniotic membranes stored after which lambs were returned to their mothers post-operatively. At 1 month, a standardised deep dermal burn was created under general anaesthesia on both flanks of the lamb. One flank was covered with unmatched AM, the other with paraffin gauze. Animals were sequentially euthanased from Day 3-60 after injury and tissue analysed for histopathology and immunohistochemically for alpha-smooth muscle actin (alphaSMA) content. AM resulted in reduced scar tissue as assessed histopathologically and reduced alphaSMA content. This study provides the first laboratory evidence that AM may reduce scar formation after burn injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Burn-wound healing is a dynamic, interactive process involving a number of cellular and molecular events and is characterized by inflammation, granulation tissue formation, re-epithelialization, and tissue remodeling (Greenhalgh, 2002; Linares, 2002). Unlike incisional-wound healing, it also requires extensive re-epithelialization due to a predominant horizontal loss of tissue and often heals with abnormal scarring when burns involve deep dermis. The early mammalian fetus has the remarkable ability to regenerate normal epidermis and dermis and to heal dermal incisional wounds with no signs of scarring. Extensive research has indicated that scarless healing appears to be intrinsic to fetal skin (McCallion and Ferguson, 1996; Ferguson and O’Kane, 2004). Previously, we reported a fetal burn model, in which 80-day-old ovine fetuses (gestation¼ 145–153 days) healed deep dermal partial thickness burns without scars, whereas postnatal lambs healed equal depth burns with significant scarring (Cuttle et al., 2005; Fraser et al., 2005). This burn model provided early evidence that fetal skin has the capacity to repair and restore dermal horizontal loss, not just vertical injuries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freestanding membranes created from Bombyx mori silk fibroin (BMSF) offer a potential vehicle for corneal cell transplantation since they are transparent and support the growth of human corneal epithelial cells (HCE). Fibroin derived from the wild silkworm Antheraea pernyi (APSF) might provide a superior material by virtue of containing putative cell- attachment sites that are absent from BMSF. Thus we have investigated the feasibility of producing transparent, freestanding membranes from APSF and have analysed the behaviour of HCE cells on this material. No significant differences in cell numbers or phenotype were observed in short term HCE cell cultures established on either fibroin. Production of transparent freestanding APSF membranes, however, proved to be problematic as cast solutions of APSF were more prone to becoming opaque, displayed significantly lower permeability and were more brittle than BMSF-membranes. Cultures of HCE cells established on either membrane developed a normal stratified morphology with cytokeratin pair 3/12 being immuno-localized to the superficial layers. We conclude that while it is feasible to produce transparent freestanding membranes from APSF, the technical difficulties associated with this biomaterial, along with an absence of enhanced cell growth, currently favours the continued development of BMSF as a preferred vehicle for corneal cell transplantation. Nevertheless, it remains possible that refinement of techniques for processing APSF might yet lead to improvements in the handling properties and performance of this material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucocorticoids, released in high concentrations from the adrenal cortex during stressful experiences, bind to glucocorticoid receptors in nuclear and peri-nuclear sites in neuronal somata. Their classically known mode of action is to induce gene promoter receptors to alter gene transcription. Nuclear glucocorticoid receptors are particularly dense in brain regions crucial for memory, including memory of stressful experiences, such as the hippocampus and amygdala. While it has been proposed that glucocorticoids may also act via membrane bound receptors, the existence of the latter remains controversial. Using electron microscopy, we found glucocorticoid receptors localized to non-genomic sites in rat lateral amygdala, glia processes, presynaptic terminals, neuronal dendrites, and dendritic spines including spine organelles and postsynaptic membrane densities. The lateral nucleus of the amygdala is a region specifically implicated in the formation of memories for stressful experiences. These newly observed glucocorticoid receptor immunoreactive sites were in addition to glucocorticoid receptor immunoreactive signals observed using electron and confocal microscopy in lateral amygdala principal neuron and GABA neuron soma and nuclei, cellular domains traditionally associated with glucocorticoid immunoreactivity. In lateral amygdala, glucocorticoid receptors are thus also localized to non-nuclear-membrane translocation sites, particularly dendritic spines, where they show an affinity for postsynaptic membrane densities, and may have a specialized role in modulating synaptic transmission plasticity related to fear and emotional memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design and synthesis of molecularly or supramolecularly defined interfacial architectures have seen in recent years a remarkable growth of interest and scientific research activities for various reasons. On the one hand, it is generally believed that the construction of an interactive interface between the living world of cells, tissue, or whole organisms and the (inorganic or organic) materials world of technical devices such as implants or medical parts requires proper construction and structural (and functional) control of this organism–machine interface. It is still the very beginning of generating a better understanding of what is needed to make an organism tolerate implants, to guarantee bidirectional communication between microelectronic devices and living tissue, or to simply construct interactive biocompatibility of surfaces in general. This exhaustive book lucidly describes the design, synthesis, assembly and characterization, and bio-(medical) applications of interfacial layers on solid substrates with molecularly or supramolecularly controlled architectures. Experts in the field share their contributions that have been developed in recent years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Foetal Alcohol Syndrome has long gone unrecognised and undiagnosed in Australia. In the last few years of the 21st Century (2010-14) health practitioners are finally seeking ways of diagnosing the effects of alcohol in pregnancy on the next generation. The author offers a power point presentation which gives guidance on making an accurate diagnosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using both human and murine cell lines, we show that malignant cells are able to invade through basement membrane and also secrete elevated amounts of collagenase IV, an enzyme implicated in the degradation of basement membranes. Using serine proteinase inhibitors and antibodies to plasminogen activators as well as a newly described collagenase inhibitor we demonstrate that a protease cascade leads to the activation of an enzyme(s) that cleaves collagen IV. Inhibition at each step reduces the invasion of the tumor cells through reconstituted basement membrane in vitro. Treatment with a collagenase inhibitor reduced the incidence of lung lesions in mice given i.v. injections of malignant melanoma cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatocyte growth factor/scatter factor (HGF/SF) is a protein growth factor whose pleiotropic effects on epithelial cells include the stimulation of motility, mitosis and tubulogenesis. These responses are mediated by the cell surface tyrosine kinase receptor c-met. Because both the cytokine and receptor are found in the gastrointestinal tract, we have studied the effects of HGF/SF on transformed gut epithelial cells which express c-met. Here we describe the response of a new transformed human jejunal epithelioid cell line (HIE-7) to HGF/SF. Morphologically HIE-7 cells are immature. Their epithelial lineage was confirmed by reactivity with the epithelial specific antibodies AE1/AE3, Cam 5.2, Ber-EP4 and anti-EMA and is consistent with their expression of c-met mRNA and protein. In addition, electron microscopic analysis revealed the presence of primitive junctions and rudimentary microvilli, but features of polarization were absent. When grown on reconstituted basement membranes, HIE-7 cells formed closely associated multicellular cord-like structures adjacent to acellular spaces. However, the cells did not mature structurally, form lumen-like structures or express disaccharidase mRNA, even in the presence of recombinant HGF (rHGF). On the other hand, rHGF induced HIE-7 cells to scatter and stimulated their rapid migration in a modified wound assay. To determine whether the motogenic effect caused by rHGF is associated with HIE-7 cell invasiveness across reconstituted basement membranes, a Boyden chamber chemoinvasion assay was performed. rHGF stimulated a 10-fold increase in the number of HIE-7 cells that crossed the basement membrane barrier, while only stimulating a small increase in chemotaxis across a collagen IV matrix, suggesting that the cytokine activates matrix penetration by these cells. rHGF also stimulated the invasion of basement membranes by an undifferentiated rat intestinal cell line (IEC-6) and by two human colon cancer cell lines which are poorly differentiated (DLD-1 and SW 948). In contrast, two moderately well differentiated colon cancer cell lines (Caco-2 and HT-29) did not manifest an invasive response when exposed to rHGF. These results suggest that HGF/SF may play a significant role in the invasive behavior of anaplastic and poorly differentiated gut epithelial tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invasion of extracellular matrices is crucial to a number of physiological and pathophysiological states, including tumor cell metastasis, arthritis, embryo implantation, wound healing, and early development. To isolate invasion from the additional complexities of these scenarios a number of in vitro invasion assays have been developed over the years. Early studies employed intact tissues, like denuded amniotic membrane (1) or embryonic chick heart fragments (2), however recently, purified matrix components or complex matrix extracts have been used to provide more uniform and often more rapid analyses (for examples, see the following integrin studies). Of course, the more holistic view of invasion offered in the earlier assays is valuable and cannot be fully reproduced in these more rapid assays, but advantages of reproducibility among replicates, ease of preparation and analysis, and overall high throughput favor the newer assays. In this chapter, we will focus on providing detailed protocols for Matrigel-based assays (Matrigel=reconstituted basement membrane; reviewed in ref. (3)). Matrigel is an extract from the transplantable Engelbreth-Holm-Swarm murine sarcoma that deposits a multilammelar basement membrane. Matrigel is available commercially (Becton Dickinson, Bedford, MA), and can be manipulated as a liquid at 4°C into a variety of different formats. Alternatively, cell culture inserts precoated with Matrigel can be purchased for even greater simplicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications. Conventional desalination methods are energy and operationally intensive, whereas adsorption-based techniques are simple and easy to use for point-of-use water purification, yet their capacity to remove salts is limited. Here we report that plasma-modified ultralong carbon nanotubes exhibit ultrahigh specific adsorption capacity for salt (exceeding 400% by weight) that is two orders of magnitude higher than that found in the current state-of-the-art activated carbon-based water treatment systems. We exploit this adsorption capacity in ultralong carbon nanotube-based membranes that can remove salt, as well as organic and metal contaminants. These ultralong carbon nanotube-based membranes may lead to next-generation rechargeable, point-of-use potable water purification appliances with superior desalination, disinfection and filtration properties. © 2013 Macmillan Publishers Limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria have mechanisms to export proteins for diverse purposes, including colonization of hosts and pathogenesis. A small number of archetypal bacterial secretion machines have been found in several groups of bacteria and mediate a fundamentally distinct secretion process. Perhaps erroneously, proteins called 'autotransporters' have long been thought to be one of these protein secretion systems. Mounting evidence suggests that autotransporters might be substrates to be secreted, not an autonomous transporter system. We have discovered a new translocation and assembly module (TAM) that promotes efficient secretion of autotransporters in proteobacteria. Functional analysis of the TAM in Citrobacter rodentium, Salmonella enterica and Escherichia coli showed that it consists of an Omp85-family protein, TamA, in the outer membrane and TamB in the inner membrane of diverse bacterial species. The discovery of the TAM provides a new target for the development of therapies to inhibit colonization by bacterial pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the key neuron-to-neuron interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. However, the signal transduction mechanisms by which stress mediates its lasting effects on synapse transmission and on memory are not fully understood. A key component of the stress response is the increased secretion of adrenal steroids. Adrenal steroids (e.g., cortisol) bind to genomic mineralocorticoid and glucocorticoid receptors (gMRs and gGRs) in the cytosol. In addition, they may act through membrane receptors (mMRs and mGRs), and signal transduction through these receptors may allow for rapid modulation of synaptic transmission as well as modulation of membrane ion currents. mMRs increase synaptic and neuronal excitability; mechanisms include the facilitation of glutamate release through extracellular signal-regulated kinase signal transduction. In contrast, mGRs decrease synaptic and neuronal excitability by reducing calcium currents through N-methyl-D-aspartate receptors and voltage-gated calcium channels by way of protein kinase A- and G protein-dependent mechanisms. This body of functional data complements anatomical evidence localizing GRs to the postsynaptic membrane. Finally, accumulating data also suggest the possibility that mMRs and mGRs may show an inverted U-shaped dose response, whereby glutamatergic synaptic transmission is increased by low doses of corticosterone acting at mMRs and decreased by higher doses acting at mGRs. Thus, synaptic transmission is regulated by mMRs and mGRs, and part of the stress signaling response is a direct and bidirectional modulation of the synapse itself by adrenal steroids.