203 resultados para differential analysis
Prevalence and trends of the diabetes epidemic in South Asia : a systematic review and meta-analysis
Resumo:
Background Diabetes mellitus has reached epidemic proportions worldwide. South Asians are known to have an increased predisposition for diabetes which has become an important health concern in the region. We discuss the prevalence of pre-diabetes and diabetes in South Asia and explore the differential risk factors reported. Methods Prevalence data were obtained by searching the Medline® database with; ‘prediabetes’ and ‘diabetes mellitus’ (MeSH major topic) and ‘Epidemology/EP’ (MeSH subheading). Search limits were articles in English, between 01/01/1980–31/12/2011, on human adults (≥19 years). The conjunction of the above results was narrowed down with country names. Results The most recent reported prevalence of pre-diabetes:diabetes in regional countries were; Bangladesh–4.7%:8.5% (2004–2005;Rural), India–4.6%:12.5% (2007;Rural); Maldives–3.0%:3.7% (2004;National), Nepal–19.5%:9.5% (2007;Urban), Pakistan–3.0%:7.2% (2002;Rural), Sri Lanka–11.5%:10.3% (2005–2006;National). Urban populations demonstrated a higher prevalence of diabetes. An increasing trend in prevalence of diabetes was observed in urban/rural India and rural Sri Lanka. The diabetes epidemicity index decreased with the increasing prevalence of diabetes in respective countries. A high epidemicity index was seen in Sri Lanka (2005/2006–52.8%), while for other countries, the epidemicity index was comparatively low (rural India 2007–26.9%; urban India 2002/2005–31.3%, and urban Bangladesh–33.1%). Family history, urban residency, age, higher BMI, sedentary lifestyle, hypertension and waist-hip ratio were associated with an increased risks of diabetes. Conclusion A significant epidemic of diabetes is present in the South Asian region with a rapid increase in prevalence over the last two decades. Hence there is a need for urgent preventive and curative strategies .
Resumo:
Background Cancer outlier profile analysis (COPA) has proven to be an effective approach to analyzing cancer expression data, leading to the discovery of the TMPRSS2 and ETS family gene fusion events in prostate cancer. However, the original COPA algorithm did not identify down-regulated outliers, and the currently available R package implementing the method is similarly restricted to the analysis of over-expressed outliers. Here we present a modified outlier detection method, mCOPA, which contains refinements to the outlier-detection algorithm, identifies both over- and under-expressed outliers, is freely available, and can be applied to any expression dataset. Results We compare our method to other feature-selection approaches, and demonstrate that mCOPA frequently selects more-informative features than do differential expression or variance-based feature selection approaches, and is able to recover observed clinical subtypes more consistently. We demonstrate the application of mCOPA to prostate cancer expression data, and explore the use of outliers in clustering, pathway analysis, and the identification of tumour suppressors. We analyse the under-expressed outliers to identify known and novel prostate cancer tumour suppressor genes, validating these against data in Oncomine and the Cancer Gene Index. We also demonstrate how a combination of outlier analysis and pathway analysis can identify molecular mechanisms disrupted in individual tumours. Conclusions We demonstrate that mCOPA offers advantages, compared to differential expression or variance, in selecting outlier features, and that the features so selected are better able to assign samples to clinically annotated subtypes. Further, we show that the biology explored by outlier analysis differs from that uncovered in differential expression or variance analysis. mCOPA is an important new tool for the exploration of cancer datasets and the discovery of new cancer subtypes, and can be combined with pathway and functional analysis approaches to discover mechanisms underpinning heterogeneity in cancers
Resumo:
In this article, we analyze the three-component reaction-diffusion system originally developed by Schenk et al. (PRL 78:3781–3784, 1997). The system consists of bistable activator-inhibitor equations with an additional inhibitor that diffuses more rapidly than the standard inhibitor (or recovery variable). It has been used by several authors as a prototype three-component system that generates rich pulse dynamics and interactions, and this richness is the main motivation for the analysis we present. We demonstrate the existence of stationary one-pulse and two-pulse solutions, and travelling one-pulse solutions, on the real line, and we determine the parameter regimes in which they exist. Also, for one-pulse solutions, we analyze various bifurcations, including the saddle-node bifurcation in which they are created, as well as the bifurcation from a stationary to a travelling pulse, which we show can be either subcritical or supercritical. For two-pulse solutions, we show that the third component is essential, since the reduced bistable two-component system does not support them. We also analyze the saddle-node bifurcation in which two-pulse solutions are created. The analytical method used to construct all of these pulse solutions is geometric singular perturbation theory, which allows us to show that these solutions lie in the transverse intersections of invariant manifolds in the phase space of the associated six-dimensional travelling wave system. Finally, as we illustrate with numerical simulations, these solutions form the backbone of the rich pulse dynamics this system exhibits, including pulse replication, pulse annihilation, breathing pulses, and pulse scattering, among others.
Resumo:
Power system stabilizer (PSS) is one of the most important controllers in modern power systems for damping low frequency oscillations. Many efforts have been dedicated to design the tuning methodologies and allocation techniques to obtain optimal damping behaviors of the system. Traditionally, it is tuned mostly for local damping performance, however, in order to obtain a globally optimal performance, the tuning of PSS needs to be done considering more variables. Furthermore, with the enhancement of system interconnection and the increase of system complexity, new tools are required to achieve global tuning and coordination of PSS to achieve optimal solution in a global meaning. Differential evolution (DE) is a recognized as a simple and powerful global optimum technique, which can gain fast convergence speed as well as high computational efficiency. However, as many other evolutionary algorithms (EA), the premature of population restricts optimization capacity of DE. In this paper, a modified DE is proposed and applied for optimal PSS tuning of 39-Bus New-England system. New operators are introduced to reduce the probability of getting premature. To investigate the impact of system conditions on PSS tuning, multiple operating points will be studied. Simulation result is compared with standard DE and particle swarm optimization (PSO).
Resumo:
The numerical solution of stochastic differential equations (SDEs) has been focused recently on the development of numerical methods with good stability and order properties. These numerical implementations have been made with fixed stepsize, but there are many situations when a fixed stepsize is not appropriate. In the numerical solution of ordinary differential equations, much work has been carried out on developing robust implementation techniques using variable stepsize. It has been necessary, in the deterministic case, to consider the "best" choice for an initial stepsize, as well as developing effective strategies for stepsize control-the same, of course, must be carried out in the stochastic case. In this paper, proportional integral (PI) control is applied to a variable stepsize implementation of an embedded pair of stochastic Runge-Kutta methods used to obtain numerical solutions of nonstiff SDEs. For stiff SDEs, the embedded pair of the balanced Milstein and balanced implicit method is implemented in variable stepsize mode using a predictive controller for the stepsize change. The extension of these stepsize controllers from a digital filter theory point of view via PI with derivative (PID) control will also be implemented. The implementations show the improvement in efficiency that can be attained when using these control theory approaches compared with the regular stepsize change strategy.
Resumo:
In this work we discuss the effects of white and coloured noise perturbations on the parameters of a mathematical model of bacteriophage infection introduced by Beretta and Kuang in [Math. Biosc. 149 (1998) 57]. We numerically simulate the strong solutions of the resulting systems of stochastic ordinary differential equations (SDEs), with respect to the global error, by means of numerical methods of both Euler-Taylor expansion and stochastic Runge-Kutta type.
Resumo:
This paper gives a review of recent progress in the design of numerical methods for computing the trajectories (sample paths) of solutions to stochastic differential equations. We give a brief survey of the area focusing on a number of application areas where approximations to strong solutions are important, with a particular focus on computational biology applications, and give the necessary analytical tools for understanding some of the important concepts associated with stochastic processes. We present the stochastic Taylor series expansion as the fundamental mechanism for constructing effective numerical methods, give general results that relate local and global order of convergence and mention the Magnus expansion as a mechanism for designing methods that preserve the underlying structure of the problem. We also present various classes of explicit and implicit methods for strong solutions, based on the underlying structure of the problem. Finally, we discuss implementation issues relating to maintaining the Brownian path, efficient simulation of stochastic integrals and variable-step-size implementations based on various types of control.
Resumo:
The pioneering work of Runge and Kutta a hundred years ago has ultimately led to suites of sophisticated numerical methods suitable for solving complex systems of deterministic ordinary differential equations. However, in many modelling situations, the appropriate representation is a stochastic differential equation and here numerical methods are much less sophisticated. In this paper a very general class of stochastic Runge-Kutta methods is presented and much more efficient classes of explicit methods than previous extant methods are constructed. In particular, a method of strong order 2 with a deterministic component based on the classical Runge-Kutta method is constructed and some numerical results are presented to demonstrate the efficacy of this approach.
Resumo:
Stochastic differential equations (SDEs) arise fi om physical systems where the parameters describing the system can only be estimated or are subject to noise. There has been much work done recently on developing numerical methods for solving SDEs. This paper will focus on stability issues and variable stepsize implementation techniques for numerically solving SDEs effectively.
Resumo:
Stochastic differential equations (SDEs) arise from physical systems where the parameters describing the system can only be estimated or are subject to noise. Much work has been done recently on developing higher order Runge-Kutta methods for solving SDEs numerically. Fixed stepsize implementations of numerical methods have limitations when, for example, the SDE being solved is stiff as this forces the stepsize to be very small. This paper presents a completely general variable stepsize implementation of an embedded Runge Kutta pair for solving SDEs numerically; in this implementation, there is no restriction on the value used for the stepsize, and it is demonstrated that the integration remains on the correct Brownian path.
Resumo:
Stochastic differential equations (SDEs) arise fi om physical systems where the parameters describing the system can only be estimated or are subject to noise. There has been much work done recently on developing numerical methods for solving SDEs. This paper will focus on stability issues and variable stepsize implementation techniques for numerically solving SDEs effectively. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In recent years considerable attention has been paid to the numerical solution of stochastic ordinary differential equations (SODEs), as SODEs are often more appropriate than their deterministic counterparts in many modelling situations. However, unlike the deterministic case numerical methods for SODEs are considerably less sophisticated due to the difficulty in representing the (possibly large number of) random variable approximations to the stochastic integrals. Although Burrage and Burrage [High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations, Applied Numerical Mathematics 22 (1996) 81-101] were able to construct strong local order 1.5 stochastic Runge-Kutta methods for certain cases, it is known that all extant stochastic Runge-Kutta methods suffer an order reduction down to strong order 0.5 if there is non-commutativity between the functions associated with the multiple Wiener processes. This order reduction down to that of the Euler-Maruyama method imposes severe difficulties in obtaining meaningful solutions in a reasonable time frame and this paper attempts to circumvent these difficulties by some new techniques. An additional difficulty in solving SODEs arises even in the Linear case since it is not possible to write the solution analytically in terms of matrix exponentials unless there is a commutativity property between the functions associated with the multiple Wiener processes. Thus in this present paper first the work of Magnus [On the exponential solution of differential equations for a linear operator, Communications on Pure and Applied Mathematics 7 (1954) 649-673] (applied to deterministic non-commutative Linear problems) will be applied to non-commutative linear SODEs and methods of strong order 1.5 for arbitrary, linear, non-commutative SODE systems will be constructed - hence giving an accurate approximation to the general linear problem. Secondly, for general nonlinear non-commutative systems with an arbitrary number (d) of Wiener processes it is shown that strong local order I Runge-Kutta methods with d + 1 stages can be constructed by evaluated a set of Lie brackets as well as the standard function evaluations. A method is then constructed which can be efficiently implemented in a parallel environment for this arbitrary number of Wiener processes. Finally some numerical results are presented which illustrate the efficacy of these approaches. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In many modeling situations in which parameter values can only be estimated or are subject to noise, the appropriate mathematical representation is a stochastic ordinary differential equation (SODE). However, unlike the deterministic case in which there are suites of sophisticated numerical methods, numerical methods for SODEs are much less sophisticated. Until a recent paper by K. Burrage and P.M. Burrage (1996), the highest strong order of a stochastic Runge-Kutta method was one. But K. Burrage and P.M. Burrage (1996) showed that by including additional random variable terms representing approximations to the higher order Stratonovich (or Ito) integrals, higher order methods could be constructed. However, this analysis applied only to the one Wiener process case. In this paper, it will be shown that in the multiple Wiener process case all known stochastic Runge-Kutta methods can suffer a severe order reduction if there is non-commutativity between the functions associated with the Wiener processes. Importantly, however, it is also suggested how this order can be repaired if certain commutator operators are included in the Runge-Kutta formulation. (C) 1998 Elsevier Science B.V. and IMACS. All rights reserved.
Resumo:
In Burrage and Burrage [1] it was shown that by introducing a very general formulation for stochastic Runge-Kutta methods, the previous strong order barrier of order one could be broken without having to use higher derivative terms. In particular, methods of strong order 1.5 were developed in which a Stratonovich integral of order one and one of order two were present in the formulation. In this present paper, general order results are proven about the maximum attainable strong order of these stochastic Runge-Kutta methods (SRKs) in terms of the order of the Stratonovich integrals appearing in the Runge-Kutta formulation. In particular, it will be shown that if an s-stage SRK contains Stratonovich integrals up to order p then the strong order of the SRK cannot exceed min{(p + 1)/2, (s - 1)/2), p greater than or equal to 2, s greater than or equal to 3 or 1 if p = 1.
Resumo:
Neutrophils serve as an intriguing model for the study of innate immune cellular activity induced by physiological stress. We measured changes in the transcriptome of circulating neutrophils following an experimental exercise trial (EXTRI) consisting of 1 h of intense cycling immediately followed by 1 h of intense running. Blood samples were taken at baseline, 3 h, 48 h, and 96 h post-EXTRI from eight healthy, endurance-trained, male subjects. RNA was extracted from isolated neutrophils. Differential gene expression was evaluated using Illumina microarrays and validated with quantitative PCR. Gene set enrichment analysis identified enriched molecular signatures chosen from the Molecular Signatures Database. Blood concentrations of muscle damage indexes, neutrophils, interleukin (IL)-6 and IL-10 were increased (P < 0.05) 3 h post-EXTRI. Upregulated groups of functionally related genes 3 h post-EXTRI included gene sets associated with the recognition of tissue damage, the IL-1 receptor, and Toll-like receptor (TLR) pathways (familywise error rate, P value < 0.05). The core enrichment for these pathways included TLRs, low-affinity immunoglobulin receptors, S100 calcium binding protein A12, and negative regulators of innate immunity, e.g., IL-1 receptor antagonist, and IL-1 receptor associated kinase-3. Plasma myoglobin changes correlated with neutrophil TLR4 gene expression (r = 0.74; P < 0.05). Neutrophils had returned to their nonactivated state 48 h post-EXTRI, indicating that their initial proinflammatory response was transient and rapidly counterregulated. This study provides novel insight into the signaling mechanisms underlying the neutrophil responses to endurance exercise, suggesting that their transcriptional activity was particularly induced by damage-associated molecule patterns, hypothetically originating from the leakage of muscle components into the circulation.