744 resultados para data privacy
Resumo:
A home is an embodiment of human privacy, apart from providing shelter, security and several other functions. Achieving the desired level of privacy at home is very important in Muslim societies. Privacy is intended to protect the female members of the family from strangers, especially while entertaining guests at home. One way of controlling levels of exposure of the domestic domains to strangers is by controlling privacy levels. This research will investigate perceptions of privacy among Australian Muslims when entertaining guests at their homes. This research will also investigate the extent that modesty (achieved through both appearance and design) acts as the balancing factor in achieving a family’s desired levels of privacy while also affording them the capacity to be hospitable to guests. This research will use a qualitative approach to investigate Australian Muslim homes around Queensland, predominantly in the Brisbane area. A total number of 20 to 60 participants (10 to 30 males, 10 to 30 females) ranging from 25 to 55 years old will be interviewed. Ideally, participants will be those who have children or extended families (parents or siblings) living in the house. The data will be coded and analysed for the purpose of generating new knowledge for architects and designers when designing Muslim homes. It will also extend the current body of knowledge related to privacy mechanisms in housing designs, thereby benefitting architects and designers in the future.
Resumo:
Using Media-Access-Control (MAC) address for data collection and tracking is a capable and cost effective approach as the traditional ways such as surveys and video surveillance have numerous drawbacks and limitations. Positioning cell-phones by Global System for Mobile communication was considered an attack on people's privacy. MAC addresses just keep a unique log of a WiFi or Bluetooth enabled device for connecting to another device that has not potential privacy infringements. This paper presents the use of MAC address data collection approach for analysis of spatio-temporal dynamics of human in terms of shared space utilization. This paper firstly discuses the critical challenges and key benefits of MAC address data as a tracking technology for monitoring human movement. Here, proximity-based MAC address tracking is postulated as an effective methodology for analysing the complex spatio-temporal dynamics of human movements at shared zones such as lounge and office areas. A case study of university staff lounge area is described in detail and results indicates a significant added value of the methodology for human movement tracking. By analysis of MAC address data in the study area, clear statistics such as staff’s utilisation frequency, utilisation peak periods, and staff time spent is obtained. The analyses also reveal staff’s socialising profiles in terms of group and solo gathering. The paper is concluded with a discussion on why MAC address tracking offers significant advantages for tracking human behaviour in terms of shared space utilisation with respect to other and more prominent technologies, and outlines some of its remaining deficiencies.
Resumo:
We consider the following problem: members in a dynamic group retrieve their encrypted data from an untrusted server based on keywords and without any loss of data confidentiality and member’s privacy. In this paper, we investigate common secure indices for conjunctive keyword-based retrieval over encrypted data, and construct an efficient scheme from Wang et al. dynamic accumulator, Nyberg combinatorial accumulator and Kiayias et al. public-key encryption system. The proposed scheme is trapdoorless and keyword-field free. The security is proved under the random oracle, decisional composite residuosity and extended strong RSA assumptions.
Resumo:
We consider the following problem: users of an organization wish to outsource the storage of sensitive data to a large database server. It is assumed that the server storing the data is untrusted so the data stored have to be encrypted. We further suppose that the manager of the organization has the right to access all data, but a member of the organization can not access any data alone. The member must collaborate with other members to search for the desired data. In this paper, we investigate the notion of threshold privacy preserving keyword search (TPPKS) and define its security requirements. We construct a TPPKS scheme and show the proof of security under the assumptions of intractability of discrete logarithm, decisional Diffie-Hellman and computational Diffie-Hellman problems.
Resumo:
This research has established a new privacy framework, privacy model, and privacy architecture to create more transparent privacy for social networking users. The architecture is designed into three levels: Business, Data, and Technology, which is based on The Open Group Architecture Framework (TOGAF®). This framework and architecture provides a novel platform for investigating privacy in Social Networks (SNs). This approach mitigates many current SN privacy issues, and leads to a more controlled form of privacy assessment. Ultimately, more privacy will encourage more connections between people across SN services.
Resumo:
Social Networks (SN) users have various privacy requirements to protect their information; to address this issue, a six-stage thematic analysis of scholarly articles related to SN user privacy concerns were synthesized. Then this research combines mixed methods research employing the strengths of quantitative and qualitative research to investigate general SN users, and thus construct a new set of ?ve primary and Twenty-?ve secondary SN user privacy requirements. Such an approach has been rarely used to examine the privacy requirements. Factor analysis results show superior agreement with theoretical predictions and signi?cant improvement over previous alternative models of SN user privacy requirements. This research presented here has the potential to provide for the development of more sophisticated privacy controls which will increase the ability of SN users to: specify their rights in SNs and to determine the protection of their own SN data.
Resumo:
The travel and tourism industry has come to rely heavily on information and communication technologies to facilitate relations with consumers. Compiling consumer data profiles has become easier and it is widely thought that consumers place great importance on how that data is handled by firms. Lack of trust may cause consumers to have privacy concerns and may, in turn, have an adverse impact on consumers’ willingness to purchase online. Three specific aspects of privacy that have received attention from researchers are unauthorized use of secondary data, invasion of privacy, and errors. A survey study was undertaken to examine the effects of these factors on both prior purchase of travel products via the Internet and future purchase probability. Surprisingly, no significant relationships were found to indicate that such privacy concerns affect online purchase behavior within the travel industry. Implications for managers are discussed.
Resumo:
This thesis considers whether the Australian Privacy Commissioner's use of its powers supports compliance with the requirement to 'take reasonable steps' to protect personal information in National Privacy Principle 4 of the Privacy Act 1988 (Cth). Two unique lenses were used. First, the Commissioner's use of powers was assessed against the principles of transparency, balance and vigorousness and secondly against alignment with an industry practice approach to securing information. Following a comprehensive review of publicly available materials, interviews and investigation file records, this thesis found that the Commissioner's use of his powers has not been transparent, balanced or vigorous, nor has it been supportive of an industry practice approach to securing data. Accordingly, it concludes that the Privacy Commissioner's use of its regulatory powers is unlikely to result in any significant improvement to the security of personal information held by organisations in Australia.
Resumo:
The workshop is an activity of the IMIA Working Group ‘Security in Health Information Systems’ (SiHIS). It is focused to the growing global problem: how to protect personal health data in today’s global eHealth and digital health environment. It will review available trust building mechanisms, security measures and privacy policies. Technology alone does not solve this complex problem and current protection policies and legislation are considered woefully inadequate. Among other trust building tools, certification and accreditation mechanisms are dis-cussed in detail and the workshop will determine their acceptance and quality. The need for further research and international collective action are discussed. This workshop provides an opportunity to address a critical growing problem and make pragmatic proposals for sustainable and effective solutions for global eHealth and digital health.
Resumo:
Preface The 9th Australasian Conference on Information Security and Privacy (ACISP 2004) was held in Sydney, 13–15 July, 2004. The conference was sponsored by the Centre for Advanced Computing – Algorithms and Cryptography (ACAC), Information and Networked Security Systems Research (INSS), Macquarie University and the Australian Computer Society. The aims of the conference are to bring together researchers and practitioners working in areas of information security and privacy from universities, industry and government sectors. The conference program covered a range of aspects including cryptography, cryptanalysis, systems and network security. The program committee accepted 41 papers from 195 submissions. The reviewing process took six weeks and each paper was carefully evaluated by at least three members of the program committee. We appreciate the hard work of the members of the program committee and external referees who gave many hours of their valuable time. Of the accepted papers, there were nine from Korea, six from Australia, five each from Japan and the USA, three each from China and Singapore, two each from Canada and Switzerland, and one each from Belgium, France, Germany, Taiwan, The Netherlands and the UK. All the authors, whether or not their papers were accepted, made valued contributions to the conference. In addition to the contributed papers, Dr Arjen Lenstra gave an invited talk, entitled Likely and Unlikely Progress in Factoring. This year the program committee introduced the Best Student Paper Award. The winner of the prize for the Best Student Paper was Yan-Cheng Chang from Harvard University for his paper Single Database Private Information Retrieval with Logarithmic Communication. We would like to thank all the people involved in organizing this conference. In particular we would like to thank members of the organizing committee for their time and efforts, Andrina Brennan, Vijayakrishnan Pasupathinathan, Hartono Kurnio, Cecily Lenton, and members from ACAC and INSS.
Resumo:
The concept of big data has already outperformed traditional data management efforts in almost all industries. Other instances it has succeeded in obtaining promising results that provide value from large-scale integration and analysis of heterogeneous data sources for example Genomic and proteomic information. Big data analytics have become increasingly important in describing the data sets and analytical techniques in software applications that are so large and complex due to its significant advantages including better business decisions, cost reduction and delivery of new product and services [1]. In a similar context, the health community has experienced not only more complex and large data content, but also information systems that contain a large number of data sources with interrelated and interconnected data attributes. That have resulted in challenging, and highly dynamic environments leading to creation of big data with its enumerate complexities, for instant sharing of information with the expected security requirements of stakeholders. When comparing big data analysis with other sectors, the health sector is still in its early stages. Key challenges include accommodating the volume, velocity and variety of healthcare data with the current deluge of exponential growth. Given the complexity of big data, it is understood that while data storage and accessibility are technically manageable, the implementation of Information Accountability measures to healthcare big data might be a practical solution in support of information security, privacy and traceability measures. Transparency is one important measure that can demonstrate integrity which is a vital factor in the healthcare service. Clarity about performance expectations is considered to be another Information Accountability measure which is necessary to avoid data ambiguity and controversy about interpretation and finally, liability [2]. According to current studies [3] Electronic Health Records (EHR) are key information resources for big data analysis and is also composed of varied co-created values [3]. Common healthcare information originates from and is used by different actors and groups that facilitate understanding of the relationship for other data sources. Consequently, healthcare services often serve as an integrated service bundle. Although a critical requirement in healthcare services and analytics, it is difficult to find a comprehensive set of guidelines to adopt EHR to fulfil the big data analysis requirements. Therefore as a remedy, this research work focus on a systematic approach containing comprehensive guidelines with the accurate data that must be provided to apply and evaluate big data analysis until the necessary decision making requirements are fulfilled to improve quality of healthcare services. Hence, we believe that this approach would subsequently improve quality of life.
Resumo:
With the ever increasing amount of eHealth data available from various eHealth systems and sources, Health Big Data Analytics promises enticing benefits such as enabling the discovery of new treatment options and improved decision making. However, concerns over the privacy of information have hindered the aggregation of this information. To address these concerns, we propose the use of Information Accountability protocols to provide patients with the ability to decide how and when their data can be shared and aggregated for use in big data research. In this paper, we discuss the issues surrounding Health Big Data Analytics and propose a consent-based model to address privacy concerns to aid in achieving the promised benefits of Big Data in eHealth.
Resumo:
Concerns over the security and privacy of patient information are one of the biggest hindrances to sharing health information and the wide adoption of eHealth systems. At present, there are competing requirements between healthcare consumers' (i.e. patients) requirements and healthcare professionals' (HCP) requirements. While consumers want control over their information, healthcare professionals want access to as much information as required in order to make well-informed decisions and provide quality care. In order to balance these requirements, the use of an Information Accountability Framework devised for eHealth systems has been proposed. In this paper, we take a step closer to the adoption of the Information Accountability protocols and demonstrate their functionality through an implementation in FluxMED, a customisable EHR system.
Resumo:
The world has experienced a large increase in the amount of available data. Therefore, it requires better and more specialized tools for data storage and retrieval and information privacy. Recently Electronic Health Record (EHR) Systems have emerged to fulfill this need in health systems. They play an important role in medicine by granting access to information that can be used in medical diagnosis. Traditional systems have a focus on the storage and retrieval of this information, usually leaving issues related to privacy in the background. Doctors and patients may have different objectives when using an EHR system: patients try to restrict sensible information in their medical records to avoid misuse information while doctors want to see as much information as possible to ensure a correct diagnosis. One solution to this dilemma is the Accountable e-Health model, an access protocol model based in the Information Accountability Protocol. In this model patients are warned when doctors access their restricted data. They also enable a non-restrictive access for authenticated doctors. In this work we use FluxMED, an EHR system, and augment it with aspects of the Information Accountability Protocol to address these issues. The Implementation of the Information Accountability Framework (IAF) in FluxMED provides ways for both patients and physicians to have their privacy and access needs achieved. Issues related to storage and data security are secured by FluxMED, which contains mechanisms to ensure security and data integrity. The effort required to develop a platform for the management of medical information is mitigated by the FluxMED's workflow-based architecture: the system is flexible enough to allow the type and amount of information being altered without the need to change in your source code.