349 resultados para componentwise ultimate bounds
Resumo:
Until recently, the hot-rolled steel members have been recognized as the most popular and widely used steel group, but in recent times, the use of cold-formed high strength steel members has rapidly increased. However, the structural behavior of light gauge high strength cold-formed steel members characterized by various buckling modes is not yet fully understood. The current cold-formed steel sections such as C- and Z-sections are commonly used because of their simple forming procedures and easy connections, but they suffer from certain buckling modes. It is therefore important that these buckling modes are either delayed or eliminated to increase the ultimate capacity of these members. This research is therefore aimed at developing a new cold-formed steel beam with two torsionally rigid rectangular hollow flanges and a slender web formed using intermittent screw fastening to enhance the flexural capacity while maintaining a minimum fabrication cost. This thesis describes a detailed investigation into the structural behavior of this new Rectangular Hollow Flange Beam (RHFB), subjected to flexural action The first phase of this research included experimental investigations using thirty full scale lateral buckling tests and twenty two section moment capacity tests using specially designed test rigs to simulate the required loading and support conditions. A detailed description of the experimental methods, RHFB failure modes including local, lateral distortional and lateral torsional buckling modes, and moment capacity results is presented. A comparison of experimental results with the predictions from the current design rules and other design methods is also given. The second phase of this research involved a methodical and comprehensive investigation aimed at widening the scope of finite element analysis to investigate the buckling and ultimate failure behaviours of RHFBs subjected to flexural actions. Accurate finite element models simulating the physical conditions of both lateral buckling and section moment capacity tests were developed. Comparison of experimental and finite element analysis results showed that the buckling and ultimate failure behaviour of RHFBs can be simulated well using appropriate finite element models. Finite element models simulating ideal simply supported boundary conditions and a uniform moment loading were also developed in order to use in a detailed parametric study. The parametric study results were used to review the current design rules and to develop new design formulae for RHFBs subjected to local, lateral distortional and lateral torsional buckling effects. Finite element analysis results indicate that the discontinuity due to screw fastening has a noticeable influence only for members in the intermediate slenderness region. Investigations into different combinations of thicknesses in the flange and web indicate that increasing the flange thickness is more effective than web thickness in enhancing the flexural capacity of RHFBs. The current steel design standards, AS 4100 (1998) and AS/NZS 4600 (1996) are found sufficient to predict the section moment capacity of RHFBs. However, the results indicate that the AS/NZS 4600 is more accurate for slender sections whereas AS 4100 is more accurate for compact sections. The finite element analysis results further indicate that the current design rules given in AS/NZS 4600 is adequate in predicting the member moment capacity of RHFBs subject to lateral torsional buckling effects. However, they were inadequate in predicting the capacities of RHFBs subject to lateral distortional buckling effects. This thesis has therefore developed a new design formula to predict the lateral distortional buckling strength of RHFBs. Overall, this thesis has demonstrated that the innovative RHFB sections can perform well as economically and structurally efficient flexural members. Structural engineers and designers should make use of the new design rules and the validated existing design rules to design the most optimum RHFB sections depending on the type of applications. Intermittent screw fastening method has also been shown to be structurally adequate that also minimises the fabrication cost. Product manufacturers and builders should be able to make use of this in their applications.
Resumo:
Programs written in languages of the Oberon family usually contain runtime tests on the dynamic type of variables. In some cases it may be desirable to reduce the number of such tests. Typeflow analysis is a static method of determining bounds on the types that objects may possess at runtime. We show that this analysis is able to reduce the number of tests in certain plausible circumstances. Furthermore, the same analysis is able to detect certain program errors at compile time, which would normally only be detected at program execution. This paper introduces the concepts of typeflow analysis and details its use in the reduction of runtime overhead in Oberon-2.
Resumo:
The results of a numerical investigation into the errors for least squares estimates of function gradients are presented. The underlying algorithm is obtained by constructing a least squares problem using a truncated Taylor expansion. An error bound associated with this method contains in its numerator terms related to the Taylor series remainder, while its denominator contains the smallest singular value of the least squares matrix. Perhaps for this reason the error bounds are often found to be pessimistic by several orders of magnitude. The circumstance under which these poor estimates arise is elucidated and an empirical correction of the theoretical error bounds is conjectured and investigated numerically. This is followed by an indication of how the conjecture is supported by a rigorous argument.
Resumo:
In recent times, light gauge cold-formed steel sections have been used extensively since they have a very high strength to weight ratio compared with thicker hot-rolled steel sections. However, they are susceptible to various buckling modes including a distortional mode and hence show complex behaviour under fire conditions. Therefore a research project based on detailed experimental studies was undertaken to investigate the distortional buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. More than 150 axial compression tests were undertaken at uniform ambient and elevated temperatures. Two types of cross sections were selected with nominal thicknesses of 0.60, 0.80, and 0.95 mm. Both low (G250) and high (G550) strength steels were used. Distortional buckling tests were conducted at six different temperatures in the range of 20 to 800°C. The ultimate loads of compression members subject to distortional buckling were then used to review the adequacy of the current design rules at ambient and elevated temperatures. This paper presents the details of this experimental study and the results.
Resumo:
This paper is aimed at investigating the effect of web openings on the plastic bending behaviour and section moment capacity of a new cold-formed steel beam known as LiteSteel beam (LSB) using numerical modelling. Different LSB sections with varying circular hole diameter and spacing were considered. A simplified but appropriate numerical modelling technique was developed for the modelling of monosymmetric sections such as LSBs subject to bending, and was used to simulate a series of section moment capacity tests of LSB flexural members with web openings. The buckling and ultimate strength behaviour was investigated in detail and the modeling technique was further improved through a comparison of numerical and experimental results. This paper describes the simplified finite element modeling technique used in this study that includes all the significant behavioural effects affecting the plastic bending behaviour and section moment capacity of LSB sections with web holes. Numerical and test results and associated findings are also presented.
Resumo:
The new cold-formed LiteSteel beam (LSB) sections have found increasing popularity in residential, industrial and commercial buildings due to their lightweight and cost-effectiveness. They have the beneficial characteristics of including torsionally rigid rectangular flanges combined with economical fabrication processes. Currently there is significant interest in using LSB sections as flexural members in floor joist systems. When used as floor joists, the LSB sections require holes in the web to provide access for inspection and various services. But there are no design methods that provide accurate predictions of the moment capacities of LSBs with web holes. In this study, the buckling and ultimate strength behaviour of LSB flexural members with web holes was investigated in detail by using a detailed parametric study based on finite element analyses with an aim to develop appropriate design rules and recommendations for the safe design of LSB floor joists. Moment capacity curves were obtained using finite element analyses including all the significant behavioural effects affecting their ultimate member capacity. The parametric study produced the required moment capacity curves of LSB section with a range of web hole combinations and spans. A suitable design method for predicting the ultimate moment capacity of LSB with web holes was finally developed. This paper presents the details of this investigation and the results
Resumo:
This paper presents the details of experimental and numerical studies on the shear behaviour of a recently developed, cold-formed steel beam known as LiteSteel Beam (LSB). The LSB sections are produced by a patented manufacturing process involving simultaneous cold-forming and electric resistance welding. It has a unique shape of a channel beam with two rectangular hollow flanges. Recent research has demonstrated the presence of increased shear capacity of LSBs due to the additional fixity along the web to flange juncture, but the current design rules ignore this effect. Therefore they were modified by including a higher elastic shear buckling coefficient. In the present study, the ultimate shear capacity results obtained from the experimental and numerical studies of 10 different LSB sections were compared with the modified shear capacity design rules. It was found that they are still conservative as they ignore the presence of post-buckling strength. Therefore the design rules were further modified to include the available post-buckling strength. Suitable design rules were also developed under the direct strength method format. This paper presents the details of this study and the results including the final design rules for the shear capacity of LSBs.
Resumo:
As the ultimate corporate decision-makers, directors have an impact on the investment time horizons of the corporations they govern. How they make investment decisions has been profoundly influenced by the expansion of the investment chain and the increasing concentration of share ownership in institutional hands. By examining agency in light of legal theory, we highlight that the board is in fact sui generis and not an agent of shareholders. Consequently, transparency can lead to directors being 'captured' by institutional investor objectives and timeframes, potentially to the detriment of the corporation as a whole. The counter-intuitive conclusion is that transparency may, under certain conditions, undermine good corporate governance and lead to excessive short-termism.
Resumo:
Because aesthetics can have a profound effect upon the human relationship to the non-human environment the importance of aesthetics to ecologically sustainable designed landscapes has been acknowledged. However, in recognition that the physical forms of designed landscapes are an expression of the social values of the time, some design professionals have called for a new aesthetic ― one that reflects these current ecological concerns. To address this, some authors have suggested various theoretical design frameworks upon which such an aesthetic could be based. Within these frameworks there is an underlying theme that the patterns and processes of natural systems have the potential to form a new aesthetic for landscape design —an aesthetic based on fractal rather than Euclidean geometry. Perry, Reeves and Sim (2008) have shown that it is possible to differentiate between different landscape forms by fractal analysis. However, this research also shows that individual scenes from within very different landscape forms can possess the same fractal properties. Early data, revealed by transforming landscape images from the spatial to the frequency domain, using the fast Fourier transform, suggest that fractal patterning can have a significant effect within the landscape. In fact, it may be argued that any landscape design that includes living processes will include some design element whose ultimate form can only be expressed through the mathematics of fractal geometry. This paper will present ongoing research into the potential role of fractal geometry as a basis for a new form language – a language that may articulate an aesthetic for landscape design that echoes our ecological awakening.
Resumo:
The planning of airports has long been contentious because of their localisation of negative impacts. The globalisation, commercialisation and deregulation of the aviation industry has unleashed powerful new economic forces both on and offairport. Over the last two decades, many airports have evolved into airport cities located at the heart of the wider aerotropolis region. This shifts the appropriate scale of planning analysis towards broader regional concerns. However,governments have been slow to respond and airport planning usually remains poorly integrated with local, city and regional planning imperatives. The Australian experience exemplifies the divide. The privatization of major Australian airports from 1996 has seen billions of dollars spent on new airside and landside infrastructure but with little oversight from local and state authorities because the ultimate authority for on-airport development is the Federal Minister for Transport. Consequently, there have been growing tensions in many major airport regions between the private airport lessee and the broader community, exacerbated by both the building of highly conspicuous non-aeronautical developments and growing airport area congestion. This paper examines the urban planning content of Australia’s national aviation policy review (2008-09) with reference to current and potential opportunities for all-of-region collaboration in the planning process.
Resumo:
We propose to design a Custom Learning System that responds to the unique needs and potentials of individual students, regardless of their location, abilities, attitudes, and circumstances. This project is intentionally provocative and future-looking but it is not unrealistic or unfeasible. We propose that by combining complex learning databases with a learner’s personal data, we could provide all students with a personal, customizable, and flexible education. This paper presents the initial research undertaken for this project of which the main challenges were to broadly map the complex web of data available, to identify what logic models are required to make the data meaningful for learning, and to translate this knowledge into simple and easy-to-use interfaces. The ultimate outcome of this research will be a series of candidate user interfaces and a broad system logic model for a new smart system for personalized learning. This project is student-centered, not techno-centric, aiming to deliver innovative solutions for learners and schools. It is deliberately future-looking, allowing us to ask questions that take us beyond the limitations of today to motivate new demands on technology.
Resumo:
Purpose: This two-part research project was undertaken as part of the planning process by Queensland Health (QH), Cancer Screening Services Unit (CSSU), Queensland Bowel Cancer Screening Program (QBCSP), in partnership with the National Bowel Cancer Screening Program (NBCSP), to prepare for the implementation of the NBCSP in public sector colonoscopy services in QLD in late 2006. There was no prior information available on the quality of colonoscopy services in Queensland (QLD) and no prior studies that assessed the quality of colonoscopy training in Australia. Furthermore, the NBCSP was introduced without extra funding for colonoscopy service improvement or provision for increases in colonoscopic capacity resulting from the introduction of the NBCSP. The main purpose of the research was to record baseline data on colonoscopy referral and practice in QLD and current training in colonoscopy Australia-wide. It was undertaken from a quality improvement perspective. Implementation of the NBCSP requires that all aspects of the screening pathway, in particular colonoscopy services for the assessment of positive Faecal Occult Blood Tests (FOBTs), will be effective, efficient, equitable and evidence-based. This study examined two important aspects of the continuous quality improvement framework for the NBCSP as they relate to colonoscopy services: (1) evidence-based practice, and (2) quality of colonoscopy training. The Principal Investigator was employed as Senior Project Officer (Training) in the QBCSP during the conduct of this research project. Recommendations from this research have been used to inform the development and implementation of quality improvement initiatives for provision of colonoscopy in the NBCSP, its QLD counterpart the QBCSP and colonoscopy services in QLD, in general. Methods – Part 1 Chart audit of evidence-based practice: The research was undertaken in two parts from 2005-2007. The first part of this research comprised a retrospective chart audit of 1484 colonoscopy records (some 13% of all colonoscopies conducted in public sector facilities in the year 2005) in three QLD colonoscopy services. Whilst some 70% of colonoscopies are currently conducted in the private sector, only public sector colonoscopy facilities provided colonoscopies under the NBCSP. The aim of this study was to compare colonoscopy referral and practice with explicit criteria derived from the National Health & Medical Research Council (NHMRC) (1999) Clinical Practice Guidelines for the Prevention, Early Detection and Management of Colorectal Cancer, and describe the nature of variance with the guidelines. Symptomatic presentations were the most common indication for colonoscopy (60.9%). These comprised per rectal bleeding (31.0%), change of bowel habit (22.1%), abdominal pain (19.6%), iron deficiency anaemia (16.2%), inflammatory bowel disease (8.9%) and other symptoms (11.4%). Surveillance and follow-up colonoscopies accounted for approximately one-third of the remaining colonoscopy workload across sites. Gastroenterologists (GEs) performed relatively more colonoscopies per annum (59.9%) compared to general surgeons (GS) (24.1%), colorectal surgeons (CRS) (9.4%) and general physicians (GPs) (6.5%). Guideline compliance varied with the designation of the colonoscopist. Compliance was lower for CRS (62.9%) compared to GPs (76.0%), GEs (75.0%), GSs (70.9%, p<0.05). Compliance with guideline recommendations for colonoscopic surveillance for family history of colorectal cancer (23.9%), polyps (37.0%) and a past history of bowel cancer (42.7%), was by comparison significantly lower than for symptomatic presentations (94.4%), (p<0.001). Variation with guideline recommendations occurred more frequently for polyp surveillance (earlier than guidelines recommend, 47.9%) and follow-up for past history of bowel cancer (later than recommended, 61.7%, p<0.001). Bowel cancer cases detected at colonoscopy comprised 3.6% of all audited colonoscopies. Incomplete colonoscopies occurred in 4.3% of audited colonoscopies and were more common among women (76.6%). For all colonoscopies audited, the rate of incomplete colonoscopies for GEs was 1.6% (CI 0.9-2.6), GPs 2.0% (CI 0.6-7.2), GS 7.0% (CI 4.8-10.1) and CRS 16.4% (CI 11.2-23.5). 18.6% (n=55) of patients with a documented family history of bowel cancer had colonoscopy performed against guidelines recommendations (for general (category 1) population risk, for reasons of patient request or family history of polyps, rather than for high risk status for colorectal cancer). In general, family history was inadequately documented and subsequently applied to colonoscopy referral and practice. Methods - Part 2 Surveys of quality of colonoscopy training: The second part of the research consisted of Australia-wide anonymous, self-completed surveys of colonoscopy trainers and their trainees to ascertain their opinions on the current apprenticeship model of colonoscopy in Australia and to identify any training needs. Overall, 127 surveys were received from colonoscopy trainers (estimated response rate 30.2%). Approximately 50% of trainers agreed and 27% disagreed that current numbers of training places were adequate to maintain a skilled colonoscopy workforce in preparation for the NBCSP. Approximately 70% of trainers also supported UK-style colonoscopy training within dedicated accredited training centres using a variety of training approaches including simulation. A collaborative approach with the private sector was seen as beneficial by 65% of trainers. Non-gastroenterologists (non-GEs) were more likely than GEs to be of the opinion that simulators are beneficial for colonoscopy training (χ2-test = 5.55, P = 0.026). Approximately 60% of trainers considered that the current requirements for recognition of training in colonoscopy could be insufficient for trainees to gain competence and 80% of those indicated that ≥ 200 colonoscopies were needed. GEs (73.4%) were more likely than non-GEs (36.2%) to be of the opinion that the Conjoint Committee standard is insufficient to gain competence in colonoscopy (χ2-test = 16.97, P = 0.0001). The majority of trainers did not support training either nurses (73%) or GPs in colonoscopy (71%). Only 81 (estimated response rate 17.9%) surveys were received from GS trainees (72.1%), GE trainees (26.3%) and GP trainees (1.2%). The majority were males (75.9%), with a median age 32 years and who had trained in New South Wales (41.0%) or Victoria (30%). Overall, two-thirds (60.8%) of trainees indicated that they deemed the Conjoint Committee standard sufficient to gain competency in colonoscopy. Between specialties, 75.4% of GS trainees indicated that the Conjoint Committee standard for recognition of colonoscopy was sufficient to gain competence in colonoscopy compared to only 38.5% of GE trainees. Measures of competency assessed and recorded by trainees in logbooks centred mainly on caecal intubation (94.7-100%), complications (78.9-100%) and withdrawal time (51-76.2%). Trainees described limited access to colonoscopy training lists due to the time inefficiency of the apprenticeship model and perceived monopolisation of these by GEs and their trainees. Improvements to the current training model suggested by trainees included: more use of simulation, training tools, a United Kingdom (UK)-style training course, concentration on quality indicators, increased access to training lists, accreditation of trainers and interdisciplinary colonoscopy training. Implications for the NBCSP/QBCSP: The introduction of the NBCSP/QBCSP necessitates higher quality colonoscopy services if it is to achieve its ultimate goal of decreasing the incidence of morbidity and mortality associated with bowel cancer in Australia. This will be achieved under a new paradigm for colonoscopy training and implementation of evidence-based practice across the screening pathway and specifically targeting areas highlighted in this thesis. Recommendations for improvement of NBCSP/QBCSP effectiveness and efficiency include the following: 1. Implementation of NBCSP and QBCSP health promotion activities that target men, in particular, to increase FOBT screening uptake. 2. Improved colonoscopy training for trainees and refresher courses or retraining for existing proceduralists to improve completion rates (especially for female NBCSP/QBCSP participants), and polyp and adenoma detection and removal, including newer techniques to detect flat and depressed lesions. 3. Introduction of colonoscopy training initiatives for trainees that are aligned with NBCSP/QBCSP colonoscopy quality indicators, including measurement of training outcomes using objective quality indicators such as caecal intubation, withdrawal time, and adenoma detection rate. 4. Introduction of standardised, interdisciplinary colonoscopy training to reduce apparent differences between specialties with regard to compliance with guideline recommendations, completion rates, and quality of polypectomy. 5. Improved quality of colonoscopy training by adoption of a UK-style training program with centres of excellence, incorporating newer, more objective assessment methods, use of a variety of training tools such as simulation and rotations of trainees between metropolitan, rural, and public and private sector training facilities. 6. Incorporation of NHMRC guidelines into colonoscopy information systems to improve documentation, provide guideline recommendations at the point of care, use of gastroenterology nurse coordinators to facilitate compliance with guidelines and provision of guideline-based colonoscopy referral letters for GPs. 7. Provision of information and education about the NBCSP/QBCSP, bowel cancer risk factors, including family history and polyp surveillance guidelines, for participants, GPs and proceduralists. 8. Improved referral of NBCSP/QBCSP participants found to have a high-risk family history of bowel cancer to appropriate genetics services.
Resumo:
In this thesis an investigation into theoretical models for formation and interaction of nanoparticles is presented. The work presented includes a literature review of current models followed by a series of five chapters of original research. This thesis has been submitted in partial fulfilment of the requirements for the degree of doctor of philosophy by publication and therefore each of the five chapters consist of a peer-reviewed journal article. The thesis is then concluded with a discussion of what has been achieved during the PhD candidature, the potential applications for this research and ways in which the research could be extended in the future. In this thesis we explore stochastic models pertaining to the interaction and evolution mechanisms of nanoparticles. In particular, we explore in depth the stochastic evaporation of molecules due to thermal activation and its ultimate effect on nanoparticles sizes and concentrations. Secondly, we analyse the thermal vibrations of nanoparticles suspended in a fluid and subject to standing oscillating drag forces (as would occur in a standing sound wave) and finally on lattice surfaces in the presence of high heat gradients. We have described in this thesis a number of new models for the description of multicompartment networks joined by a multiple, stochastically evaporating, links. The primary motivation for this work is in the description of thermal fragmentation in which multiple molecules holding parts of a carbonaceous nanoparticle may evaporate. Ultimately, these models predict the rate at which the network or aggregate fragments into smaller networks/aggregates and with what aggregate size distribution. The models are highly analytic and describe the fragmentation of a link holding multiple bonds using Markov processes that best describe different physical situations and these processes have been analysed using a number of mathematical methods. The fragmentation of the network/aggregate is then predicted using combinatorial arguments. Whilst there is some scepticism in the scientific community pertaining to the proposed mechanism of thermal fragmentation,we have presented compelling evidence in this thesis supporting the currently proposed mechanism and shown that our models can accurately match experimental results. This was achieved using a realistic simulation of the fragmentation of the fractal carbonaceous aggregate structure using our models. Furthermore, in this thesis a method of manipulation using acoustic standing waves is investigated. In our investigation we analysed the effect of frequency and particle size on the ability for the particle to be manipulated by means of a standing acoustic wave. In our results, we report the existence of a critical frequency for a particular particle size. This frequency is inversely proportional to the Stokes time of the particle in the fluid. We also find that for large frequencies the subtle Brownian motion of even larger particles plays a significant role in the efficacy of the manipulation. This is due to the decreasing size of the boundary layer between acoustic nodes. Our model utilises a multiple time scale approach to calculating the long term effects of the standing acoustic field on the particles that are interacting with the sound. These effects are then combined with the effects of Brownian motion in order to obtain a complete mathematical description of the particle dynamics in such acoustic fields. Finally, in this thesis, we develop a numerical routine for the description of "thermal tweezers". Currently, the technique of thermal tweezers is predominantly theoretical however there has been a handful of successful experiments which demonstrate the effect it practise. Thermal tweezers is the name given to the way in which particles can be easily manipulated on a lattice surface by careful selection of a heat distribution over the surface. Typically, the theoretical simulations of the effect can be rather time consuming with supercomputer facilities processing data over days or even weeks. Our alternative numerical method for the simulation of particle distributions pertaining to the thermal tweezers effect use the Fokker-Planck equation to derive a quick numerical method for the calculation of the effective diffusion constant as a result of the lattice and the temperature. We then use this diffusion constant and solve the diffusion equation numerically using the finite volume method. This saves the algorithm from calculating many individual particle trajectories since it is describes the flow of the probability distribution of particles in a continuous manner. The alternative method that is outlined in this thesis can produce a larger quantity of accurate results on a household PC in a matter of hours which is much better than was previously achieveable.
Resumo:
This paper focuses on the varying approaches and methodologies adopted when the calculation of holding costs is undertaken, focusing on greenfield development. Whilst acknowledging there may be some consistency in embracing first principles relating to holding cost theory, a review of the literature reveals considerable lack of uniformity in this regard. There is even less clarity in quantitative determination, especially in Australia where there has been only limited empirical analysis undertaken. Despite a growing quantum of research undertaken in relation to various elements connected with housing affordability, the matter of holding costs has not been well addressed regardless of its part in the highly prioritised Australian Government’s housing research agenda. The end result has been a modicum of qualitative commentary relating to holding costs. There have been few attempts at finer-tuned analysis that exposes a quantified level of holding cost calculated with underlying rigour. Holding costs can take many forms, but they inevitably involve the computation of “carrying costs” of an initial outlay that has yet to fully realise its ultimate yield. Although sometimes considered a “hidden” cost, it is submitted that holding costs prospectively represent a major determinate of value. If this is the case, then considered in the context of housing affordability, it is therefore potentially pervasive.
Resumo:
In this thesis we are interested in financial risk and the instrument we want to use is Value-at-Risk (VaR). VaR is the maximum loss over a given period of time at a given confidence level. Many definitions of VaR exist and some will be introduced throughout this thesis. There two main ways to measure risk and VaR: through volatility and through percentiles. Large volatility in financial returns implies greater probability of large losses, but also larger probability of large profits. Percentiles describe tail behaviour. The estimation of VaR is a complex task. It is important to know the main characteristics of financial data to choose the best model. The existing literature is very wide, maybe controversial, but helpful in drawing a picture of the problem. It is commonly recognised that financial data are characterised by heavy tails, time-varying volatility, asymmetric response to bad and good news, and skewness. Ignoring any of these features can lead to underestimating VaR with a possible ultimate consequence being the default of the protagonist (firm, bank or investor). In recent years, skewness has attracted special attention. An open problem is the detection and modelling of time-varying skewness. Is skewness constant or there is some significant variability which in turn can affect the estimation of VaR? This thesis aims to answer this question and to open the way to a new approach to model simultaneously time-varying volatility (conditional variance) and skewness. The new tools are modifications of the Generalised Lambda Distributions (GLDs). They are four-parameter distributions, which allow the first four moments to be modelled nearly independently: in particular we are interested in what we will call para-moments, i.e., mean, variance, skewness and kurtosis. The GLDs will be used in two different ways. Firstly, semi-parametrically, we consider a moving window to estimate the parameters and calculate the percentiles of the GLDs. Secondly, parametrically, we attempt to extend the GLDs to include time-varying dependence in the parameters. We used the local linear regression to estimate semi-parametrically conditional mean and conditional variance. The method is not efficient enough to capture all the dependence structure in the three indices —ASX 200, S&P 500 and FT 30—, however it provides an idea of the DGP underlying the process and helps choosing a good technique to model the data. We find that GLDs suggest that moments up to the fourth order do not always exist, there existence appears to vary over time. This is a very important finding, considering that past papers (see for example Bali et al., 2008; Hashmi and Tay, 2007; Lanne and Pentti, 2007) modelled time-varying skewness, implicitly assuming the existence of the third moment. However, the GLDs suggest that mean, variance, skewness and in general the conditional distribution vary over time, as already suggested by the existing literature. The GLDs give good results in estimating VaR on three real indices, ASX 200, S&P 500 and FT 30, with results very similar to the results provided by historical simulation.