429 resultados para chloroplast genetic engineering
Resumo:
Traffic control at a road junction by a complex fuzzy logic controller is investigated. The increase in the complexity of junction means more number of input variables must be taken into account, which will increase the number of fuzzy rules in the system. A hierarchical fuzzy logic controller is introduced to reduce the number of rules. Besides, the increase in the complexity of the controller makes formulation of the fuzzy rules difficult. A genetic algorithm based off-line leaning algorithm is employed to generate the fuzzy rules. The learning algorithm uses constant flow-rates as training sets. The system is tested by both constant and time-varying flow-rates. Simulation results show that the proposed controller produces lower average delay than a fixed-time controller does under various traffic conditions.
Resumo:
This paper presents a Genetic Algorithms (GA) approach to search the optimized path for a class of transportation problems. The formulation of the problems for suitable application of GA will be discussed. Exchanging genetic information in the sense of neighborhoods will be introduced for generation reproduction. The performance of the GA will be evaluated by computer simulation. The proposed algorithm use simple coding with population size 1 converged in reasonable optimality within several minutes.
Resumo:
Recent studies have shown that small genetic regulatory networks (GRNs) can be evolved in silico displaying certain dynamics in the underlying mathematical model. It is expected that evolutionary approaches can help to gain a better understanding of biological design principles and assist in the engineering of genetic networks. To take the stochastic nature of GRNs into account, our evolutionary approach models GRNs as biochemical reaction networks based on simple enzyme kinetics and simulates them by using Gillespie’s stochastic simulation algorithm (SSA). We have already demonstrated the relevance of considering intrinsic stochasticity by evolving GRNs that show oscillatory dynamics in the SSA but not in the ODE regime. Here, we present and discuss first results in the evolution of GRNs performing as stochastic switches.
Resumo:
In this paper a new graph-theory and improved genetic algorithm based practical method is employed to solve the optimal sectionalizer switch placement problem. The proposed method determines the best locations of sectionalizer switching devices in distribution networks considering the effects of presence of distributed generation (DG) in fitness functions and other optimization constraints, providing the maximum number of costumers to be supplied by distributed generation sources in islanded distribution systems after possible faults. The proposed method is simulated and tested on several distribution test systems in both cases of with DG and non DG situations. The results of the simulations validate the proposed method for switch placement of the distribution network in the presence of distributed generation.
Resumo:
To date, attempts to regenerate a complete tooth, including the critical periodontal tissues associated with the tooth root, have not been successful. Controversy still exists regarding the origin of the cell source for cellular cementum (epithelial or mesenchymal). This disagreement may be partially due to a lack of understanding of the events leading to the initiation and development of the tooth roots and supportive tissues, such as the cementum. Osterix (OSX) is a transcriptional factor essential for osteogenesis, but its role in cementogenesis has not been addressed. In the present study, we first documented a close relationship between the temporal- and spatial-expression pattern of OSX and the formation of cellular cementum. We then generated 3.6 Col 1-OSX transgenic mice, which displayed accelerated cementum formation vs. WT controls. Importantly, the conditional deletion of OSX in the mesenchymal cells with two different Cre systems (the 2.3 kb Col 1 and an inducible CAG-CreER) led to a sharp reduction in cellular cementum formation (including the cementum mass and mineral deposition rate) and gene expression of dentin matrix protein 1 (DMP1) by cementocytes. However, the deletion of the OSX gene after cellular cementum formed did not alter the properties of the mature cementum as evaluated by backscattered SEM and resin-cast SEM. Transient transfection of Osx in the cementoblasts in vitro significantly inhibited cell proliferation and increased cell differentiation and mineralization. Taken together, these data support 1) the mesenchymal origin of cellular cementum (from PDL progenitor cells); 2) the vital role of OSX in controlling the formation of cellular cementum; and 3) the limited remodeling of cellular cementum in adult mice.
Resumo:
Topographically and chemically modified titanium implants are recognized to have improved osteogenic properties; however, the molecular regulation of this process remains unknown. This study aimed to determine the microRNA profile and the potential regulation of osteogenic differentiation following early exposure of osteoprogenitor cells to sand-blasted, large-grit acid-etched (SLA) and hydrophilic SLA (modSLA) surfaces. Firstly, the osteogenic characteristics of the primary osteoprogenitor cells were confirmed using ALP activity and Alizarin Red S staining. The effect of smooth (SMO), SLA and modSLA surfaces on the TGF-β/BMP (BMP2, BMP6, ACVR1) and non-canonical WNT/Ca2+ (WNT5A, FZD6) pathways, as well as the integrins ITGB1 and ITGA2, was determined. It was revealed that the modified titanium surfaces could induce the activation of TGF-β/BMP and non-canonical WNT/Ca2+ signaling genes. The expression pattern of microRNAs (miRNAs) related to cell differentiation was evaluated. Statistical analysis of the differentially regulated miRNAs indicated that 35 and 32 miRNAs were down-regulated on the modSLA and SLA surfaces respectively, when compared with the smooth surface (SMO). Thirty-one miRNAs that were down-regulated were common to both modSLA and SLA. There were 10 miRNAs up-regulated on modSLA and nine on SLA surfaces, amongst which eight were the same as observed on modSLA. TargetScan predictions for the down-regulated miRNAs revealed genes of the TGF-β/BMP and non-canonical Ca2+ pathways as targets. This study demonstrated that modified titanium implant surfaces induce differential regulation of miRNAs, which potentially regulate the TGF-β/BMP and WNT/Ca2+ pathways during osteogenic differentiation on modified titanium implant surfaces.
Resumo:
The redclaw crayfish Cherax quadricarinatus (von Martens) accounts for the entire commercial production of freshwater crayfish in Australia. Two forms have been recognized, an 'Eastern' form in northern Queensland and a 'Western' form in the Northern Territory and far northern Western Australia. To date, only the Eastern form has been exported overseas for culture (including to China). The genetic structure of three Chinese redclaw crayfish culture lines from three different geographical locations in China (Xiamen in Fujian Province, Guangzhou in Guangdong Province and Chongming in Shanghai) were investigated for their levels and patterns of genetic diversity using microsatellite markers. Twenty-eight SSR markers were isolated and used to analyse genetic diversity levels in three redclaw crayfish culture lines in China. This study set out to improve the current understanding of the molecular genetic characteristics of imported strains of redclaw crayfish reared in China. Microsatellite analysis revealed moderate allelic and high gene diversity in all three culture lines. Polymorphism information content estimates for polymorphic loci varied between 0.1168 and 0.8040, while pairwise F ST values among culture lines were moderate (0.0020-0.1244). The highest estimate of divergence was evident between the Xiamen and Guangzhou populations.
Resumo:
Recently, Software as a Service (SaaS) in Cloud computing, has become more and more significant among software users and providers. To offer a SaaS with flexible functions at a low cost, SaaS providers have focused on the decomposition of the SaaS functionalities, or known as composite SaaS. This approach has introduced new challenges in SaaS resource management in data centres. One of the challenges is managing the resources allocated to the composite SaaS. Due to the dynamic environment of a Cloud data centre, resources that have been initially allocated to SaaS components may be overloaded or wasted. As such, reconfiguration for the components’ placement is triggered to maintain the performance of the composite SaaS. However, existing approaches often ignore the communication or dependencies between SaaS components in their implementation. In a composite SaaS, it is important to include these elements, as they will directly affect the performance of the SaaS. This paper will propose a Grouping Genetic Algorithm (GGA) for multiple composite SaaS application component clustering in Cloud computing that will address this gap. To the best of our knowledge, this is the first attempt to handle multiple composite SaaS reconfiguration placement in a dynamic Cloud environment. The experimental results demonstrate the feasibility and the scalability of the GGA.
Resumo:
A composite SaaS (Software as a Service) is a software that is comprised of several software components and data components. The composite SaaS placement problem is to determine where each of the components should be deployed in a cloud computing environment such that the performance of the composite SaaS is optimal. From the computational point of view, the composite SaaS placement problem is a large-scale combinatorial optimization problem. Thus, an Iterative Cooperative Co-evolutionary Genetic Algorithm (ICCGA) was proposed. The ICCGA can find reasonable quality of solutions. However, its computation time is noticeably slow. Aiming at improving the computation time, we propose an unsynchronized Parallel Cooperative Co-evolutionary Genetic Algorithm (PCCGA) in this paper. Experimental results have shown that the PCCGA not only has quicker computation time, but also generates better quality of solutions than the ICCGA.
Resumo:
The study presents a multi-layer genetic algorithm (GA) approach using correlation-based methods to facilitate damage determination for through-truss bridge structures. To begin, the structure’s damage-suspicious elements are divided into several groups. In the first GA layer, the damage is initially optimised for all groups using correlation objective function. In the second layer, the groups are combined to larger groups and the optimisation starts over at the normalised point of the first layer result. Then the identification process repeats until reaching the final layer where one group includes all structural elements and only minor optimisations are required to fine tune the final result. Several damage scenarios on a complicated through-truss bridge example are nominated to address the proposed approach’s effectiveness. Structural modal strain energy has been employed as the variable vector in the correlation function for damage determination. Simulations and comparison with the traditional single-layer optimisation shows that the proposed approach is efficient and feasible for complicated truss bridge structures when the measurement noise is taken into account.
Resumo:
Optimising the container transfer schedule at the multimodal terminals is known to be NP-hard, which implies that the best solution becomes computationally infeasible as problem sizes increase. Genetic Algorithm (GA) techniques are used to reduce container handling/transfer times and ships' time at the port by speeding up handling operations. The GA is chosen due to the relatively good results that have been reported even with the simplest GA implementations to obtain near-optimal solutions in reasonable time. Also discussed, is the application of the model to assess the consequences of increased scheduled throughput time as well as different strategies such as the alternative plant layouts, storage policies and number of yard machines. A real data set used for the solution and subsequent sensitivity analysis is applied to the alternative plant layouts, storage policies and number of yard machines.
Resumo:
Software as a Service (SaaS) in Cloud is getting more and more significant among software users and providers recently. A SaaS that is delivered as composite application has many benefits including reduced delivery costs, flexible offers of the SaaS functions and decreased subscription cost for users. However, this approach has introduced a new problem in managing the resources allocated to the composite SaaS. The resource allocation that has been done at the initial stage may be overloaded or wasted due to the dynamic environment of a Cloud. A typical data center resource management usually triggers a placement reconfiguration for the SaaS in order to maintain its performance as well as to minimize the resource used. Existing approaches for this problem often ignore the underlying dependencies between SaaS components. In addition, the reconfiguration also has to comply with SaaS constraints in terms of its resource requirements, placement requirement as well as its SLA. To tackle the problem, this paper proposes a penalty-based Grouping Genetic Algorithm for multiple composite SaaS components clustering in Cloud. The main objective is to minimize the resource used by the SaaS by clustering its component without violating any constraint. Experimental results demonstrate the feasibility and the scalability of the proposed algorithm.
Resumo:
Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches to the virtual machine placement problem consider the energy consumption by physical machines in a data center only, but do not consider the energy consumption in communication network in the data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement in order to make the data center more energy-efficient. In this paper, we propose a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both the servers and the communication network in the data center. Experimental results show that the genetic algorithm performs well when tackling test problems of different kinds, and scales up well when the problem size increases.
Resumo:
Deciding the appropriate population size and number of is- lands for distributed island-model genetic algorithms is often critical to the algorithm’s success. This paper outlines a method that automatically searches for good combinations of island population sizes and the number of islands. The method is based on a race between competing parameter sets, and collaborative seeding of new parameter sets. This method is applicable to any problem, and makes distributed genetic algorithms easier to use by reducing the number of user-set parameters. The experimental results show that the proposed method robustly and reliably finds population and islands settings that are comparable to those found with traditional trial-and-error approaches.
Resumo:
Distributed Genetic Algorithms (DGAs) designed for the Internet have to take its high communication cost into consideration. For island model GAs, the migration topology has a major impact on DGA performance. This paper describes and evaluates an adaptive migration topology optimizer that keeps the communication load low while maintaining high solution quality. Experiments on benchmark problems show that the optimized topology outperforms static or random topologies of the same degree of connectivity. The applicability of the method on real-world problems is demonstrated on a hard optimization problem in VLSI design.