248 resultados para car-like vehicle pose control
Resumo:
This paper presents a motion control system for tracking of attitude and speed of an underactuated slender-hull unmanned underwater vehicle. The feedback control strategy is developed using the Port-Hamiltonian theory. By shaping of the target dynamics (desired dynamic response in closed loop) with particular attention to the target mass matrix, the influence of the unactuated dynamics on the controlled system is suppressed. This results in achievable dynamics independent of stable uncontrolled states. Throughout the design, the insight of the physical phenomena involved is used to propose the desired target dynamics. Integral action is added to the system for robustness and to reject steady disturbances. This is achieved via a change of coordinates that result in input-to-state stable (ISS) target dynamics. As a final step in the design, an anti-windup scheme is implemented to account for limited actuator capacity, namely saturation. The performance of the design is demonstrated through simulation with a high-fidelity model.
Resumo:
Speech recognition in car environments has been identified as a valuable means for reducing driver distraction when operating non-critical in-car systems. Likelihood-maximising (LIMA) frameworks optimise speech enhancement algorithms based on recognised state sequences rather than traditional signal-level criteria such as maximising signal-to-noise ratio. Previously presented LIMA frameworks require calibration utterances to generate optimised enhancement parameters which are used for all subsequent utterances. Sub-optimal recognition performance occurs in noise conditions which are significantly different from that present during the calibration session - a serious problem in rapidly changing noise environments. We propose a dialog-based design which allows regular optimisation iterations in order to track the changing noise conditions. Experiments using Mel-filterbank spectral subtraction are performed to determine the optimisation requirements for vehicular environments and show that minimal optimisation assists real-time operation with improved speech recognition accuracy. It is also shown that the proposed design is able to provide improved recognition performance over frameworks incorporating a calibration session.
Resumo:
An important aspect of designing any product is validation. Virtual design process (VDP) is an alternative to hardware prototyping in which analysis of designs can be done without manufacturing physical samples. In recent years, VDP have been generated either for animation or filming applications. This paper proposes a virtual reality design process model on one of the applications when used as a validation tool. This technique is used to generate a complete design guideline and validation tool of product design. To support the design process of a product, a virtual environment and VDP method were developed that supports validation and an initial design cycle performed by a designer. The product model car carrier is used as illustration for which virtual design was generated. The loading and unloading sequence of the model for the prototype was generated using automated reasoning techniques and was completed by interactively animating the product in the virtual environment before complete design was built. By using the VDP process critical issues like loading, unloading, Australian Design rules (ADR) and clearance analysis were done. The process would save time, money in physical sampling and to large extent in complete math generation. Since only schematic models are required, it saves time in math modelling and handling of bigger size assemblies due to complexity of the models. This extension of VDP process for design evaluation is unique and was developed, implemented successfully. In this paper a Toll logistics and J Smith and Sons car carrier which is developed under author’s responsibility has been used to illustrate our approach of generating design validation via VDP.
Resumo:
For the last two decades heart disease has been the highest single cause of death for the human population. With an alarming number of patients requiring heart transplant, and donations not able to satisfy the demand, treatment looks to mechanical alternatives. Rotary Ventricular Assist Devices, VADs, are miniature pumps which can be implanted alongside the heart to assist its pumping function. These constant flow devices are smaller, more efficient and promise a longer operational life than more traditional pulsatile VADs. The development of rotary VADs has focused on single pumps assisting the left ventricle only to supply blood for the body. In many patients however, failure of both ventricles demands that an additional pulsatile device be used to support the failing right ventricle. This condition renders them hospital bound while they wait for an unlikely heart donation. Reported attempts to use two rotary pumps to support both ventricles concurrently have warned of inherent haemodynamic instability. Poor balancing of the pumps’ flow rates quickly leads to vascular congestion increasing the risk of oedema and ventricular ‘suckdown’ occluding the inlet to the pump. This thesis introduces a novel Bi-Ventricular Assist Device (BiVAD) configuration where the pump outputs are passively balanced by vascular pressure. The BiVAD consists of two rotary pumps straddling the mechanical passive controller. Fluctuations in vascular pressure induce small deflections within both pumps adjusting their outputs allowing them to maintain arterial pressure. To optimise the passive controller’s interaction with the circulation, the controller’s dynamic response is optimised with a spring, mass, damper arrangement. This two part study presents a comprehensive assessment of the prototype’s ‘viability’ as a support device. Its ‘viability’ was considered based on its sensitivity to pathogenic haemodynamics and the ability of the passive response to maintain healthy circulation. The first part of the study is an experimental investigation where a prototype device was designed and built, and then tested in a pulsatile mock circulation loop. The BiVAD was subjected to a range of haemodynamic imbalances as well as a dynamic analysis to assess the functionality of the mechanical damper. The second part introduces the development of a numerical program to simulate human circulation supported by the passively controlled BiVAD. Both investigations showed that the prototype was able to mimic the native baroreceptor response. Simulating hypertension, poor flow balancing and subsequent ventricular failure during BiVAD support allowed the passive controller’s response to be assessed. Triggered by the resulting pressure imbalance, the controller responded by passively adjusting the VAD outputs in order to maintain healthy arterial pressures. This baroreceptor-like response demonstrated the inherent stability of the auto regulating BiVAD prototype. Simulating pulmonary hypertension in the more observable numerical model, however, revealed a serious issue with the passive response. The subsequent decrease in venous return into the left heart went unnoticed by the passive controller. Meanwhile the coupled nature of the passive response not only decreased RVAD output to reduce pulmonary arterial pressure, but it also increased LVAD output. Consequently, the LVAD increased fluid evacuation from the left ventricle, LV, and so actually accelerated the onset of LV collapse. It was concluded that despite the inherently stable baroreceptor-like response of the passive controller, its lack of sensitivity to venous return made it unviable in its present configuration. The study revealed a number of other important findings. Perhaps the most significant was that the reduced pulse experienced during constant flow support unbalanced the ratio of effective resistances of both vascular circuits. Even during steady rotary support therefore, the resulting ventricle volume imbalance increased the likelihood of suckdown. Additionally, mechanical damping of the passive controller’s response successfully filtered out pressure fluctuations from residual ventricular function. Finally, the importance of recognising inertial contributions to blood flow in the atria and ventricles in a numerical simulation were highlighted. This thesis documents the first attempt to create a fully auto regulated rotary cardiac assist device. Initial results encourage development of an inlet configuration sensitive to low flow such as collapsible inlet cannulae. Combining this with the existing baroreceptor-like response of the passive controller will render a highly stable passively controlled BiVAD configuration. The prototype controller’s passive interaction with the vasculature is a significant step towards a highly stable new generation of artificial heart.
Resumo:
In this paper, a new power sharing control method for a microgrid with several distributed generation units is proposed. The presence of both inertial and noninertial sources with different power ratings, maximum power point tracking, and various types of loads pose a great challenge for the power sharing and system stability. The conventional droop control method is modified to achieve the desired power sharing ensuring system stability in a highly resistive network. A transformation matrix is formed to derive equivalent real and reactive power output of the converter and equivalent feedback gain matrix for the modified droop equation. The proposed control strategy, aimed for the prototype microgrid planned at Queensland University of Technology, is validated through extensive simulation results using PSCAD/EMTDC software.
Resumo:
We love the automobile and the independence that it gives us. We are more mobile than we have ever been before in recorded history. In Australia 80% of journeys are by private motor vehicle. But it is becoming increasingly obvious that this era has a very limited lifespan. Fuel prices have skyrocketed recently with no end in sight. In spite of massive amounts of road construction, our cities are becoming increasingly congested. We desperately need to address climate change and the automobile is a major contributor. Carbon trading schemes will put even more upward pressure on fuel prices. At some point in the near future, most of us will need to reconsider our automobile usage whether we like it or not. The time to plan for the future is now. But what will happen to our mobility when access to cheap and available petroleum becomes a thing of the past? Will we start driving electric/hydrogen/ethanol vehicles? Or will we flock to public transport? Will our public transport systems cope with a massive increase in demand? Will thousands of people take to alternatives such as bicycles? If so, where do we put them? How do we change our roads to cope? How do we change our buildings to suit? Will we need recharging stations in our car park for example? Some countries are less reliant on the car than others e.g. Holland and Germany. How can the rest of the world learn from them? This paper discusses many of the likely outcomes of the inevitable shift away from society’s reliance on petroleum and examines the expected impact on the built environment. It also looks at ways in which the built environment can be planned to help ease the transition to a fossil free world. 1.
Resumo:
The over represented number of novice drivers involved in crashes is alarming. Driver training is one of the interventions aimed at mitigating the number of crashes that involve young drivers. To our knowledge, Advanced Driver Assistance Systems (ADAS) have never been comprehensively used in designing an intelligent driver training system. Currently, there is a need to develop and evaluate ADAS that could assess driving competencies. The aim is to develop an unsupervised system called Intelligent Driver Training System (IDTS) that analyzes crash risks in a given driving situation. In order to design a comprehensive IDTS, data is collected from the Driver, Vehicle and Environment (DVE), synchronized and analyzed. The first implementation phase of this intelligent driver training system deals with synchronizing multiple variables acquired from DVE. RTMaps is used to collect and synchronize data like GPS, vehicle dynamics and driver head movement. After the data synchronization, maneuvers are segmented out as right turn, left turn and overtake. Each maneuver is composed of several individual tasks that are necessary to be performed in a sequential manner. This paper focuses on turn maneuvers. Some of the tasks required in the analysis of ‘turn’ maneuver are: detect the start and end of the turn, detect the indicator status change, check if the indicator was turned on within a safe distance and check the lane keeping during the turn maneuver. This paper proposes a fusion and analysis of heterogeneous data, mainly involved in driving, to determine the risk factor of particular maneuvers within the drive. It also explains the segmentation and risk analysis of the turn maneuver in a drive.
Resumo:
This paper presents a multi-objective optimization strategy for heavy truck suspension systems based on modified skyhook damping (MSD) control, which improves ride comfort and road-friendliness simultaneously. A four-axle heavy truck-road coupling system model was established using functional virtual prototype technology; the model was then validated through a ride comfort test. As the mechanical properties and time lag of dampers were taken into account, MSD control of active and semi-active dampers was implemented using Matlab/Simulink. Through co-simulations with Adams and Matlab, the effects of passive, semi-active MSD control, and active MSD control were analyzed and compared; thus, control parameters which afforded the best integrated performance were chosen. Simulation results indicated that MSD control improves a truck’s ride comfort and roadfriendliness, while the semi-active MSD control damper obtains road-friendliness comparable to the active MSD control damper.
Resumo:
Matching method of heavy truck-rear air suspensions is discussed, and a fuzzy control strategy which improves both ride comfort and road friendliness of truck by adjusting damping coefficients of the suspension system is found. In the first place, a Dongfeng EQ1141G7DJ heavy truck’s ten DOF whole vehicle-road model was set up based on Matlab/Simulink and vehicle dynamics. Then appropriate passive air suspensions were chosen to replace the original rear leaf springs of the truck according to truck-suspension matching criterions, consequently, the stiffness of front leaf springs were adjusted too. Then the semi-active fuzzy controllers were designed for further enhancement of the truck’s ride comfort and the road friendliness. After the application of semi-active fuzzy control strategy through simulation, is was indicated that both ride comfort and road friendliness could be enhanced effectively under various road conditions. The strategy proposed may provide theory basis for design and development of truck suspension system in China.
Resumo:
Improving the performance of a incident detection system was essential to minimize the effect of incidents. A new method of incident detection was brought forward in this paper based on an in-car terminal which consisted of GPS module, GSM module and control module as well as some optional parts such as airbag sensors, mobile phone positioning system (MPPS) module, etc. When a driver or vehicle discovered the freeway incident and initiated an alarm report the incident location information located by GPS, MPPS or both would be automatically send to a transport management center (TMC), then the TMC would confirm the accident with a closed-circuit television (CCTV) or other approaches. In this method, detection rate (DR), time to detect (TTD) and false alarm rate (FAR) were more important performance targets. Finally, some feasible means such as management mode, education mode and suitable accident confirming approaches had been put forward to improve these targets.
Resumo:
A low-cost test bed was made from a modified heavy vehicle (HV) brake tester. By rotating a test HV’s wheel on an eccentric roller, a known vibration was imparted to the wheel under test. A control case for dampers in good condition was compared with two test cases of ineffective shock absorbers. Measurement of the forces at the bearings of the roller provided an indication of the HV wheel-forces. Where the level of serviceability of the shock absorbers varied, differences in wheel load provided a quality indicator corresponding to a change of damper characteristic. Conclusions regarding the levels of damper maintenance beyond which HV suspensions cause road damage and dynamic wheel forces at the threshold of tyre wear at which HV shock absorbers are normally replaced are presented.
Resumo:
President’s Report Hello fellow AITPM members, Welcome to the first edition of the AITPM National Newsletter for 2009! I trust we all had a relaxing break and managed to lose track of all things transport for just a little while. I know I had trouble doing so when hunting for a car space at the shopping centre, and experiencing new projects such as the Tugun Bypass – the new gateway between New South Wales and Queensland. Byron Bay is now as close as Noosa for those high profile beach goers of Brisbane. There was also my experience of the reduced posted speed of 90km/h on the Bruce Highway around the troublesome Gympie stretch, when returning from a short Fraser Coast holiday. I expect that this relatively inexpensive safety improvement will pay substantial dividends in terms of crash reduction. The Newsletter took its annual leave last month and is refreshed and ready for a new year to keep us all informed of the latest in traffic and transport engineering, planning and management. I would like to take this opportunity to acknowledge the ongoing significant contributions of many volunteers in the Newsletter’s production. Mr Andrew Hulse, AITPM’s Immediate Past National President, serves as the Editorial Coordinator on behalf of the Institute. Each Branch Committee also includes a Newsletter Coordinator and committee members frequently contribute as well. And the ongoing contributions of readers enable us to offer the Newsletter as a vehicle for dialogue and debate around our sector. If you would like to contribute please email AITPM’s administration officer Josephine Mitton at aitpm@aitpm.com or through your local Branch Committee. I would also like to welcome back on deck our Editor, Mr David Brown of Driven Media, who creates a fantastic package for us each month. Lastly, members would have received the Call for Papers for the AITPM 2009 National Conference, Traffic Beyond Tomorrow, to be held at the Adelaide Convention Centre between 5 – 7 August. Abstracts will be accepted up to 20 February 2009. We look forward to seeing everyone at this, our flagship event for the year. To all a good year ahead, Jon Bunker Post Script: We all will have seen through the media the enormous scale and nature of the two natural disasters Australia is experiencing at present. AITPM’s thoughts are with all of those members, family and friends who may be experiencing hardship as a result of the Victorian bushfires and North Queensland floods. AITPM is a not for profit organisation however the National Executive has taken the decision to donate in measure to the Red Cross Victorian Bushfire Disaster Relief fund and the Queensland Premier’s Disaster Relief fund as a gesture to support our fellow Australians in their time of need. Details about these funds can be found via the Victorian and Queensland Governments’ websites.
Resumo:
President’s Message Hello fellow AITPM members, We’ve been offered a lot of press lately about the Federal Government’s plan for the multibillion dollar rollout of its high speed broadband network, which at the moment is being rated to a speed of 100Mb/s. This seems fantastic in comparison to the not atypical 250 to 500kb/s that I receive on my metropolitan cable broadband, which incidentally my service provider rates at theoretical speeds of up to 8 Mb/s. I have no doubt that such a scheme will generate significant advantages to business and consumers. However, I also have some reservations. Only a few of years ago I marvelled at my first 256Mb USB stick, which cost my employer about $90. Last month I purchased a 16Gb stick with a free computer carry bag for $80, which on the back of my envelope has given me about 72 times the value of my first USB stick not including the carry bag! I am pretty sure the technology industry will find a way to eventually push a lot more than 100Mb/s down the optic fibre network just as they have done with pushing several Mb/s ADSL2 down antique copper wire. This makes me wonder about the general problem of inbuilt obsolescence of all things high-tech due to rapid advances in the tech industry. As a transport professional I then think to myself that our industry has been moving forward at somewhat of a slower pace. We certainly have had major milestones having significant impacts, such as the move from horse and cart to the self propelled motor vehicle, sealing and formal geometric design of roads, development of motorways, signalisation of intersections, coordination of networks, to simulation modelling for real time adaptive control (perhaps major change has been at a frequency of 30 years or so?). But now with ITS truly penetrating the transport market, largely thanks to the in-car GPS navigator, smart phone, e-toll and e-ticket, I believe that to avoid our own obsolescence we’re going to need to “plan for ITS” rather than just what we seem to have been doing up until now, that is, to get it out there. And we’ll likely need to do it at a faster pace. It will involve understanding how to data mine enormous data sets, better understanding the human/machine interface, keeping pace with automotive technology more closely, resolving the ethical and privacy chestnuts, and in the main actually planning for ITS to make peoples’ lives easier rather than harder. And in amongst this we’ll need to keep pace with the types of technology advances similar to my USB stick example above. All the while we’ll be making a brand new set of friends in the disciplines that will morph into ITS along with us. Hopefully these will all be “good” problems for our profession to have. I should close in reminding everyone again that AITPM’s flagship event, the 2009 AITPM National Conference, Traffic Beyond Tomorrow, is being held in Adelaide from 5 to 7 August. www.aitpm.com has all of the details about how to register, sponsor a booth, session, etc. Best regards all, Jon Bunker
Resumo:
Traffic law enforcement is based on deterrence principles, whereby drivers control their behaviour in order to avoid an undesirable sanction. For “hooning”-related driving behaviours in Queensland, the driver’s vehicle can be impounded for 48 hours, 3 months, or permanently depending on the number of previous hooning offences. It is assumed that the threat of losing something of value, their vehicle, will discourage drivers from hooning. While official data shows that the rate of repeat offending is low, an in-depth understanding of the deterrent effects of these laws should involve qualitative research with targeted drivers. A sample of 22 drivers who reported engaging in hooning behaviours participated in focus group discussions about the vehicle impoundment laws as applied to hooning offences in Queensland. The findings suggested that deterrence theory alone cannot fully explain hooning behaviour, as participants reported hooning frequently, and intended to continue doing so, despite reporting that it is likely that they will be caught, and perceiving the vehicle impoundment laws to be extremely severe. The punishment avoidance aspect of deterrence theory appears important, as well as factors over and above legal issues, particularly social influences. A concerning finding was drivers’ willingness to flee from police in order to avoid losing their vehicle permanently for a third offence, despite acknowledging risks to their own safety and that of others. This paper discusses the study findings in terms of the implications for future research directions, enforcement practices and policy development for hooning and other traffic offences for which vehicle impoundment is applied.