86 resultados para brown coal
Resumo:
In this paper, a demand-responsive decision support system is proposed by integrating the operations of coal shipment, coal stockpiles and coal railing within a whole system. A generic and flexible scheduling optimisation methodology is developed to identify, represent, model, solve and analyse the coal transport problem in a standard and convenient way. As a result, the integrated train-stockpile-ship timetable is created and optimised for improving overall efficiency of coal transport system. A comprehensive sensitivity analysis based on extensive computational experiments is conducted to validate the proposed methodology. The mathematical proposition and proof are concluded as technical and insightful advices for industry practice. The proposed methodology provides better decision making on how to assign rail rolling-stocks and upgrade infrastructure in order to significantly improve capacity utilisation with the best resource-effectiveness ratio. The proposed decision support system with train-stockpile-ship scheduling optimisation techniques is promising to be applied in railway or mining industry, especially as a useful quantitative decision making tool on how to use more current rolling-stocks or whether to buy additional rolling-stocks for mining transportation.
Resumo:
Contrast-matching ultrasmall-angle neutron scattering (USANS) and small-angle neutron scattering (SANS) techniques were used for the first time to determine both the total pore volume and the fraction of the pore volume that is inaccessible to deuterated methane, CD4, in four bituminous coals in the range of pore sizes between ∼10 Å and ∼5 μm. Two samples originated from the Illinois Basin in the U.S.A., and the other two samples were commercial Australian bituminous coals from the Bowen Basin. The total and inaccessible porosity were determined in each coal using both Porod invariant and the polydisperse spherical particle (PDSP) model analysis of the scattering data acquired from coals both in vacuum and at the pressure of CD4, at which the scattering length density of the pore-saturating fluid is equal to that of the solid coal matrix (zero average contrast pressure). The total porosity of the coals studied ranged from 7 to 13%, and the volume of pores inaccessible to CD4 varied from ∼13 to ∼36% of the total pore volume. The volume fraction of inaccessible pores shows no correlation with the maceral composition; however, it increases with a decreasing total pore volume. In situ measurements of the structure of one coal saturated with CO2 and CD4 were conducted as a function of the pressure in the range of 1−400 bar. The neutron scattering intensity from small pores with radii less than 35 Å in this coal increased sharply immediately after the fluid injection for both gases, which demonstrates strong condensation and densification of the invading subcritical CO2 and supercritical methane in small pores.
Resumo:
Fluid–solid interactions in natural and engineered porous solids underlie a variety of technological processes, including geological storage of anthropogenic greenhouse gases, enhanced coal bed methane recovery, membrane separation, and heterogeneous catalysis. The size, distribution and interconnectivity of pores, the chemical and physical properties of the solid and fluid phases collectively dictate how fluid molecules migrate into and through the micro- and meso-porous media, adsorb and ultimately react with the solid surfaces. Due to the high penetration power and relatively short wavelength of neutrons, smallangle neutron scattering (SANS) as well as ultra small-angle scattering (USANS) techniques are ideally suited for assessing the phase behavior of confined fluids under pressure as well as for evaluating the total porosity in engineered and natural porous systems including coal. Here we demonstrate that SANS and USANS can be also used for determining the fraction of the pore volume that is actually accessible to fluids as a function of pore sizes and study the fraction of inaccessible pores as a function of pore size in three coals from the Illinois Basin (USA) and Bowen Basin (Australia). Experiments were performed at CO2 and methane pressures up to 780 bar, including pressures corresponding to zero average contrast condition (ZAC), which is the pressure where no scattering from the accessible pores occurs. Scattering curves at the ZAC were compared with the scattering from same coals under vacuum and analysed using a newly developed approach that shows that the volume fraction of accessible pores in these coals varies between �90% in the macropore region to �30% in the mesopore region and the variation is distinctive for each of the examined coals. The developed methodology may be also applied for assessing the volume of accessible pores in other natural underground formations of interest for CO2 sequestration, such as saline aquifers as well as for estimating closed porosity in engineered porous solids of technological importance.
Resumo:
Small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS) measurements of the structure of two Australian bituminous coals (particle size of 1-0.5 mm) before, during, and after exposure to 155 bar of helium were made to identify any effects of pressure alone on the pore size distribution of coal and any irreversible effects upon exposure to high pressures of helium in the pore size range from 3 nm to 10 μm. No irreversible effects upon exposure were identified for any pore size. No effects of pressure on pore size distribution were observed, except for a small effect at a pore size of about 2 μm for one coal. This study provides a convenient baseline for SANS and USANS investigations on sorption of gases at elevated pressures on coals, by distinguishing between the effect of pressure alone on coal pore size distribution and against the effect of the gas to be investigated.
Resumo:
We have applied X-ray and neutron small-angle scattering techniques (SAXS, SANS, and USANS) to study the interaction between fluids and porous media in the particular case of subcritical CO2 sorption in coal. These techniques are demonstrated to give unique, pore-size-specific insights into the kinetics of CO2 sorption in a wide range of coal pores (nano to meso) and to provide data that may be used to determine the density of the sorbed CO2. We observed densification of the adsorbed CO2 by a factor up to five compared to the free fluid at the same (p, T) conditions. Our results indicate that details of CO2 sorption into coal pores differ greatly between different coals and depend on the amount of mineral matter dispersed in the coal matrix: a purely organic matrix absorbs more CO2 per unit volume than one containing mineral matter, but mineral matter markedly accelerates the sorption kinetics. Small pores are filled preferentially by the invading CO2 fluid and the apparent diffusion coefficients have been estimated to vary in the range from 5 × 10-7 cm2/min to more than 10-4 cm2/min, depending on the CO2 pressure and location on the sample.
Resumo:
This paper reports a study of ion exchange (IX) as an alternative CSG water treatment to the widely used reverse osmosis (RO) desalination process. An IX pilot plant facility has been constructed and operated using both synthetic and real CSG water samples. Application of appropriate synthetic resin technology has proved the effectiveness of IX processes.
Resumo:
In this work, 17-polychlorinated dibenzo-pdioxin/furan (PCDD/Fs) isomers were measured in ambient air at four urban sites in Seoul, Korea (from February to June 2009). The concentrations of their summed values RPCDD/Fs) across all four sites ranged from 1,947 (271 WHO05 TEQ) (Jong Ro) to 2,600 (349 WHO05 TEQ) fg/m3 (Yang Jae) with a mean of 2,125 ± 317) fg/m3 (292 WHO05 TEQ fg/m3). The sum values for the two isomer groups of RPCDD and RPCDF were 527 (30 WHO05 TEQ) and 1,598 (263 WHO05 TEQ) fg/m3, respectively. The concentration profile of individual species was dominated by the 2,3,4,7,8-PeCDF isomer, which contributed approximately 36 % of the RPCDD/Fs value. The observed temporal trends in PCDD/F concentrations were characterized by relative enhancement in the winter and spring. The relative contribution of different sources, when assessed by principal component analysis, is explained by the dominance of vehicular emissions along with coal (or gas) burning as the key source of ambient PCDD/Fs in the residential areas studied.
Resumo:
The extraction of coal seam gas (CSG) produces large volumes of potentially contaminated water. It has raised concerns about the environmental health impacts of the co-produced CSG water. In this paper, we review CSG water contaminants and their potential health effects in the context of exposure pathways in Queensland’s CSG basins. The hazardous substances associated with CSG water in Queensland include fluoride, boron, lead and benzene. The exposure pathways for CSG water are: (1) water used for municipal purposes, (2) recreational water activities in rivers, (3) occupational exposures, (4) water extracted from contaminated aquifers, and; (5) indirect exposure through the food chain. We recommend mapping of exposure pathways into communities in CSG regions to determine the potentially exposed populations in Queensland. Future efforts to monitor chemicals of concern and consolidate them into a central database will build the necessary capability to undertake a much needed environmental health impact assessment.
Resumo:
A comprehensive study was undertaken involving chemical (inorganic and organic) and bioanalytical (a suite of 14 in vitro bioassays) assessments of coal seam gas (coal bed methane) associated water (CSGW) in Queensland, Australia. CSGW is a by-product of the gas extraction process and is generally considered as water of poor quality. This was done to better understand what is known about the potential biological and environmental effects associated with the organic constituents of CSGW in Australia. In Queensland, large amounts of associated water must be withdrawn from coal seams to allow extraction of the gas. CSGW is disposed of via release to surface water, reinjected to groundwater or reused for irrigation of crops or pasture, supplied for power station cooling and or reinjected specifically to augment drinking water aquifers. Groundwater samples were collected from private wells tapping into the Walloon Coal Measures, the same coal aquifer exploited for coal seam gas production in the Surat Basin, Australia. The inorganic characteristics of these water samples were almost identical to the CSGW entering the nearby gas company operated Talinga-Condabri Water Treatment Facility. The water is brackish with a pH of 8 to 9, high sodium, bicarbonate and chloride concentrations but low calcium, magnesium and negligible sulphate concentrations. Only low levels of polyaromatic hydrocarbons (PAHs) were detected in the water samples, and neither phenols nor volatile organic compounds were found. Results from the bioassays showed no genotoxicity, protein damage, or activation of hormone receptors (with the exception of the estrogen receptor). However, five of the 14 bioassays gave positive responses: an arylhydrocarbon-receptor gene activation assay (AhR-CAFLUX), estrogenic endocrine activity (ERα-CALUX), oxidative stress response (AREc32), interference with cytokine production (THP1-CPA) and non-specific toxicity (Microtox). The observed effects were benchmarked against known water sources and were similar to secondary treated wastewater effluent, stormwater and surface water. As mixture toxicity modelling demonstrated, the detected PAHs explained less than 5% of the observed biological effects.
Resumo:
The recent growth of the coal seam gas industry has increased pressure on regional communities. Debate surrounding the industry is intense and a social licence to operate has yet to be granted to the industry in its entirety. This article presents an analysis of social issues surrounding the coal seam gas industry, making comparisons between two case studies: the Ranger and Jabiluka mines and the Yandicoogina mine. It presents the results of a desktop study, focussed on three topics: community identity; procedural justice and distributive justice, which provides a means for comparison and draws attention to central concerns. It is found that: power imbalances; changing community identities; potentially inequitable distributions of long term benefits and the process to distribute those benefits and negative perceptions of the industry as a whole serve to undermine the provision of a social licence to operate by communities and has the potential to impose significant negative impacts on companies within the industry.
Resumo:
Organic compounds in Australian coal seam gas produced water (CSG water) are poorly understood despite their environmental contamination potential. In this study, the presence of some organic substances is identified from government-held CSG water-quality data from the Bowen and Surat Basins, Queensland. These records revealed the presence of polycyclic aromatic hydrocarbons (PAHs) in 27% of samples of CSG water from the Walloon Coal Measures at concentrations <1 µg/L, and it is likely these compounds leached from in situ coals. PAHs identified from wells include naphthalene, phenanthrene, chrysene and dibenz[a,h]anthracene. In addition, the likelihood of coal-derived organic compounds leaching to groundwater is assessed by undertaking toxicity leaching experiments using coal rank and water chemistry as variables. These tests suggest higher molecular weight PAHs (including benzo[a]pyrene) leach from higher rank coals, whereas lower molecular weight PAHs leach at greater concentrations from lower rank coal. Some of the identified organic compounds have carcinogenic or health risk potential, but they are unlikely to be acutely toxic at the observed concentrations which are almost negligible (largely due to the hydrophobicity of such compounds). Hence, this study will be useful to practitioners assessing CSG water related environmental and health risk.
Resumo:
This paper addresses the regulatory issues arising in developing a new regulatory model for the New South Wales Coal Industry. As such, it identifies the relevant literature on this subject, the options available for reform, and the experience of Australian and key international bodies responsible for the development of regulatory standards in this area. In particular it: Identifies the main shortcomings in the existing regulatory approach; Identifies the potential roles/main strengths and weaknesses of different types of standards (eg specification, performance, process and systems-based rules) and potential “best practice’ combinations of standards; Examines the appropriateness of the current regulatory regime whereby the general OHS legislation (including the general duty provisions) applies to mining in addition to the large body of regulation which is specific to mining; Identifies the importance of, and possible means of addressing, issues of worker participation within the coal mining industry; Draws on the literature on what motivates companies and individuals for the purpose of recommending key provisions for inclusion in new legislation to provide appropriate personal and organisational incentives; Draws on the literature on major hazards facilities to suggest the appropriate roles for OHS management systems and safety reports or comparable approaches (eg mine safety management plans); Draws on the United Kingdom (UK) and United States of America (USA) experience of coal mine safety and its regulation for comparative purposes, and for insights as to what sort of regulation most effectively reduces work related injury and disease in coal mining; Examines the relevant roles of International Labour Organisation (ILO) Conventions; Examines the extent to which different regulatory regimes would be appropriate to open cut and underground coal mining; and Examines options for reform. This paper is focussed specifically on the issues identified above.
Resumo:
Few studies have investigated the vocal communication of ratites, and none has investigated the spectral and temporal structure of vocalizations of Apteryx, the only extant ratite genus in New Zealand. We describe the long-range vocalization (whistle call) and vocal behavior of male and female North Island Brown Kiwi (Apteryx mantelli). Spontaneous calling by seven pairs was recorded in the field over a one-year period. Call notes produced by males were tonal in nature; the fundamental frequency was ~1.5 kHz, with overtones reaching up to ~13.0 kHz. Call notes produced by females contained a series of tightly packed, poorly defined harmonics and consisted of a fundamental frequency of ~0.1 kHz, with overtones reaching ~7.0 kHz. The amplitude within notes of females was concentrated into two prominent formants. Some individuals of pairs exhibited duetting behavior that resulted in alteration of the inter-note interval after the onset of the call of their mate. Our findings draw attention to the uniqueness of the North Island Brown Kiwi's vocalizations, and we uncovered some unexpected structural features that call for further investigation.
Resumo:
Strain-based failure criteria have several advantages over stress-based failure criteria: they can account for elastic and inelastic strains, they utilise direct, observables effects instead of inferred effects (strain gauges vs. stress estimates), and model complete stress-strain curves including pre-peak, non-linear elasticity and post-peak strain weakening. In this study, a strain-based failure criterion derived from thermodynamic first principles utilising the concepts of continuum damage mechanics is presented. Furthermore, implementation of this failure criterion into a finite-element simulation is demonstrated and applied to the stability of underground mining coal pillars. In numerical studies, pillar strength is usually expressed in terms of critical stresses or stress-based failure criteria where scaling with pillar width and height is common. Previous publications have employed the finite-element method for pillar stability analysis using stress-based failure criterion such as Mohr-Coulomb and Hoek-Brown or stress-based scalar damage models. A novel constitutive material model, which takes into consideration anisotropy as well as elastic strain and damage as state variables has been developed and is presented in this paper. The damage threshold and its evolution are strain-controlled, and coupling of the state variables is achieved through the damage-induced degradation of the elasticity tensor. This material model is implemented into the finite-element software ABAQUS and can be applied to 3D problems. Initial results show that this new material model is capable of describing the non-linear behaviour of geomaterials commonly observed before peak strength is reached as well as post-peak strain softening. Furthermore, it is demonstrated that the model can account for directional dependency of failure behaviour (i.e. anisotropy) and has the potential to be expanded to environmental controls like temperature or moisture.