562 resultados para brain, computer, interface
Resumo:
A Z-source inverter based grid-interface for a variable-speed wind turbine connected to a permanent magnet synchronous generator is proposed. A control system is designed to harvest maximum wind energy under varied wind conditions with the use of the permanent magnet synchronous generator, diode-rectifier and Z-source inverter. Control systems for speed regulation of the generator and for DC- and AC- sides of the Z-source inverter are investigated using computer simulations and laboratory experiments. Simulation and experimental results verify the efficacy of the proposed approach.
Resumo:
This paper details the initial design and planning of a Field Programmable Gate Array (FPGA) implemented control system that will enable a path planner to interact with a MAVLink based flight computer. The design is aimed at small Unmanned Aircraft Vehicles (UAV) under autonomous operation which are typically subject to constraints arising from limited on-board processing capabilities, power and size. An FPGA implementation for the de- sign is chosen for its potential to address such limitations through low power and high speed in-hardware computation. The MAVLink protocol offers a low bandwidth interface for the FPGA implemented path planner to communicate with an on-board flight computer. A control system plan is presented that is capable of accepting a string of GPS waypoints generated on-board from a previously developed in- hardware Genetic Algorithm (GA) path planner and feeding them to the open source PX4 autopilot, while simultaneously respond- ing with flight status information.
Resumo:
Systems-level identification and analysis of cellular circuits in the brain will require the development of whole-brain imaging with single-cell resolution. To this end, we performed comprehensive chemical screening to develop a whole-brain clearing and imaging method, termed CUBIC (clear, unobstructed brain imaging cocktails and computational analysis). CUBIC is a simple and efficient method involving the immersion of brain samples in chemical mixtures containing aminoalcohols, which enables rapid whole-brain imaging with single-photon excitation microscopy. CUBIC is applicable to multicolor imaging of fluorescent proteins or immunostained samples in adult brains and is scalable from a primate brain to subcellular structures. We also developed a whole-brain cell-nuclear counterstaining protocol and a computational image analysis pipeline that, together with CUBIC reagents, enable the visualization and quantification of neural activities induced by environmental stimulation. CUBIC enables time-course expression profiling of whole adult brains with single-cell resolution.
Resumo:
The control of environmental factors in open-office environments, such as lighting and temperature is becoming increasingly automated. This development means that office inhabitants are losing the ability to manually adjust environmental conditions according to their needs. In this paper we describe the design, use and evaluation of MiniOrb, a system that employs ambient and tangible interaction mechanisms to allow inhabitants of office environments to maintain awareness of environmental factors, report on their own subjectively perceived office comfort levels and see how these compare to group average preferences. The system is complemented by a mobile application, which enables users to see and set the same sensor values and preferences, but using a screen-based interface. We give an account of the system’s design and outline the results of an in-situ trial and user study. Our results show that devices that combine ambient and tangible interaction approaches are well suited to the task of recording indoor climate preferences and afford a rich set of possible interactions that can complement those enabled by more conventional screen-based interfaces.
Resumo:
We incorporated a new Riemannian fluid registration algorithm into a general MRI analysis method called tensor-based morphometry to map the heritability of brain morphology in MR images from 23 monozygotic and 23 dizygotic twin pairs. All 92 3D scans were fluidly registered to a common template. Voxelwise Jacobian determinants were computed from the deformation fields to assess local volumetric differences across subjects. Heritability maps were computed from the intraclass correlations and their significance was assessed using voxelwise permutation tests. Lobar volume heritability was also studied using the ACE genetic model. The performance of this Riemannian algorithm was compared to a more standard fluid registration algorithm: 3D maps from both registration techniques displayed similar heritability patterns throughout the brain. Power improvements were quantified by comparing the cumulative distribution functions of the p-values generated from both competing methods. The Riemannian algorithm outperformed the standard fluid registration.
Resumo:
We extended genetic linkage analysis - an analysis widely used in quantitative genetics - to 3D images to analyze single gene effects on brain fiber architecture. We collected 4 Tesla diffusion tensor images (DTI) and genotype data from 258 healthy adult twins and their non-twin siblings. After high-dimensional fluid registration, at each voxel we estimated the genetic linkage between the single nucleotide polymorphism (SNP), Val66Met (dbSNP number rs6265), of the BDNF gene (brain-derived neurotrophic factor) with fractional anisotropy (FA) derived from each subject's DTI scan, by fitting structural equation models (SEM) from quantitative genetics. We also examined how image filtering affects the effect sizes for genetic linkage by examining how the overall significance of voxelwise effects varied with respect to full width at half maximum (FWHM) of the Gaussian smoothing applied to the FA images. Raw FA maps with no smoothing yielded the greatest sensitivity to detect gene effects, when corrected for multiple comparisons using the false discovery rate (FDR) procedure. The BDNF polymorphism significantly contributed to the variation in FA in the posterior cingulate gyrus, where it accounted for around 90-95% of the total variance in FA. Our study generated the first maps to visualize the effect of the BDNF gene on brain fiber integrity, suggesting that common genetic variants may strongly determine white matter integrity.
Resumo:
We developed an analysis pipeline enabling population studies of HARDI data, and applied it to map genetic influences on fiber architecture in 90 twin subjects. We applied tensor-driven 3D fluid registration to HARDI, resampling the spherical fiber orientation distribution functions (ODFs) in appropriate Riemannian manifolds, after ODF regularization and sharpening. Fitting structural equation models (SEM) from quantitative genetics, we evaluated genetic influences on the Jensen-Shannon divergence (JSD), a novel measure of fiber spatial coherence, and on the generalized fiber anisotropy (GFA) a measure of fiber integrity. With random-effects regression, we mapped regions where diffusion profiles were highly correlated with subjects' intelligence quotient (IQ). Fiber complexity was predominantly under genetic control, and higher in more highly anisotropic regions; the proportion of genetic versus environmental control varied spatially. Our methods show promise for discovering genes affecting fiber connectivity in the brain.
Resumo:
The human connectome has recently become a popular research topic in neuroscience, and many new algorithms have been applied to analyze brain networks. In particular, network topology measures from graph theory have been adapted to analyze network efficiency and 'small-world' properties. While there has been a surge in the number of papers examining connectivity through graph theory, questions remain about its test-retest reliability (TRT). In particular, the reproducibility of structural connectivity measures has not been assessed. We examined the TRT of global connectivity measures generated from graph theory analyses of 17 young adults who underwent two high-angular resolution diffusion (HARDI) scans approximately 3 months apart. Of the measures assessed, modularity had the highest TRT, and it was stable across a range of sparsities (a thresholding parameter used to define which network edges are retained). These reliability measures underline the need to develop network descriptors that are robust to acquisition parameters.
Resumo:
The SNP-SNP interactome has rarely been explored in the context of neuroimaging genetics mainly due to the complexity of conducting approximately 10(11) pairwise statistical tests. However, recent advances in machine learning, specifically the iterative sure independence screening (SIS) method, have enabled the analysis of datasets where the number of predictors is much larger than the number of observations. Using an implementation of the SIS algorithm (called EPISIS), we used exhaustive search of the genome-wide, SNP-SNP interactome to identify and prioritize SNPs for interaction analysis. We identified a significant SNP pair, rs1345203 and rs1213205, associated with temporal lobe volume. We further examined the full-brain, voxelwise effects of the interaction in the ADNI dataset and separately in an independent dataset of healthy twins (QTIM). We found that each additional loading in the epistatic effect was associated with approximately 5% greater brain regional brain volume (a protective effect) in both the ADNI and QTIM samples.
Resumo:
Information from the full diffusion tensor (DT) was used to compute voxel-wise genetic contributions to brain fiber microstructure. First, we designed a new multivariate intraclass correlation formula in the log-Euclidean framework. We then analyzed used the full multivariate structure of the tensor in a multivariate version of a voxel-wise maximum-likelihood structural equation model (SEM) that computes the variance contributions in the DTs from genetic (A), common environmental (C) and unique environmental (E) factors. Our algorithm was tested on DT images from 25 identical and 25 fraternal twin pairs. After linear and fluid registration to a mean template, we computed the intraclass correlation and Falconer's heritability statistic for several scalar DT-derived measures and for the full multivariate tensors. Covariance matrices were found from the DTs, and inputted into SEM. Analyzing the full DT enhanced the detection of A and C effects. This approach should empower imaging genetics studies that use DTI.
Resumo:
Here we describe a protocol for advanced CUBIC (Clear, Unobstructed Brain/Body Imaging Cocktails and Computational analysis). The CUBIC protocol enables simple and efficient organ clearing, rapid imaging by light-sheet microscopy and quantitative imaging analysis of multiple samples. The organ or body is cleared by immersion for 1–14 d, with the exact time required dependent on the sample type and the experimental purposes. A single imaging set can be completed in 30–60 min. Image processing and analysis can take <1 d, but it is dependent on the number of samples in the data set. The CUBIC clearing protocol can process multiple samples simultaneously. We previously used CUBIC to image whole-brain neural activities at single-cell resolution using Arc-dVenus transgenic (Tg) mice. CUBIC informatics calculated the Venus signal subtraction, comparing different brains at a whole-organ scale. These protocols provide a platform for organism-level systems biology by comprehensively detecting cells in a whole organ or body.
Resumo:
Background Project archives are becoming increasingly large and complex. On construction projects in particular, the increasing amount of information and the increasing complexity of its structure make searching and exploring information in the project archive challenging and time-consuming. Methods This research investigates a query-driven approach that represents new forms of contextual information to help users understand the set of documents resulting from queries of construction project archives. Specifically, this research extends query-driven interface research by representing three types of contextual information: (1) the temporal context is represented in the form of a timeline to show when each document was created; (2) the search-relevance context shows exactly which of the entered keywords matched each document; and (3) the usage context shows which project participants have accessed or modified a file. Results We implemented and tested these ideas within a prototype query-driven interface we call VisArchive. VisArchive employs a combination of multi-scale and multi-dimensional timelines, color-coded stacked bar charts, additional supporting visual cues and filters to support searching and exploring historical project archives. The timeline-based interface integrates three interactive timelines as focus + context visualizations. Conclusions The feasibility of using these visual design principles is tested in two types of project archives: searching construction project archives of an educational building project and tracking of software defects in the Mozilla Thunderbird project. These case studies demonstrate the applicability, usefulness and generality of the design principles implemented.
Resumo:
The current study sought to identify the impact of whether teammates in a cooperative videogame were controlled by other humans (avatars) or by the game (agents). The impact on player experience was explored through both subjective questionnaire measures and brain wave activity measurement (electroencephalography). Play with human teammates was associated with a greater sense of relatedness, but less competence and flow than play with other computer-controlled teammates. In terms of brain activity, play with human teammates was associated with greater activity in the alpha, theta and beta power bands than play with computer-controlled teammates. Overall, the results suggest that play with human teammates involves greater cognitive activity in terms of 'mentalising' than play with computer-controlled teammates. Additionally, the associations between subjective measures of player experience and brain activity are described. Limitations of the current study are identified and key directions for future research are discussed.