106 resultados para alkaline xylanase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcium silicate (CaSiO3, CS) ceramics have received significant attention for application in bone regeneration due to their excellent in vitro apatite-mineralization ability; however, how to prepare porous CS scaffolds with a controllable pore structure for bone tissue engineering still remains a challenge. Conventional methods could not efficiently control the pore structure and mechanical strength of CS scaffolds, resulting in unstable in vivo osteogenesis. The aim of this study is to set out to solve these problems by applying a modified 3D-printing method to prepare highly uniform CS scaffolds with controllable pore structure and improved mechanical strength. The in vivo osteogenesis of the prepared 3D-printed CS scaffolds was further investigated by implanting them in the femur defects of rats. The results show that the CS scaffolds prepared by the modified 3D-printing method have uniform scaffold morphology. The pore size and pore structure of CS scaffolds can be efficiently adjusted. The compressive strength of 3D-printed CS scaffolds is around 120 times that of conventional polyurethane templated CS scaffolds. 3D-Printed CS scaffolds possess excellent apatite-mineralization ability in simulated body fluids. Micro-CT analysis has shown that 3D-printed CS scaffolds play an important role in assisting the regeneration of bone defects in vivo. The healing level of bone defects implanted by 3D-printed CS scaffolds is obviously higher than that of 3D-printed b-tricalcium phosphate (b-TCP) scaffolds at both 4 and 8 weeks. Hematoxylin and eosin (H&E) staining shows that 3D-printed CS scaffolds induce higher quality of the newly formed bone than 3D-printed b-TCP scaffolds. Immunohistochemical analyses have further shown that stronger expression of human type I collagen (COL1) and alkaline phosphate (ALP) in the bone matrix occurs in the 3D-printed CS scaffolds than in the 3D-printed b-TCP scaffolds. Considering these important advantages, such as controllable structure architecture, significant improvement in mechanical strength, excellent in vivo osteogenesis and since there is no need for second-time sintering, it is indicated that the prepared 3D-printed CS scaffolds are a promising material for application in bone regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is of great importance to develop multifunctional bioactive scaffolds, which combine angiogenesis capacity, osteostimulation, and antibacterial properties for regenerating lost bone tissues. In order to achieve this aim, we prepared copper (Cu)-containing mesoporous bioactive glass (Cu-MBG) scaffolds with interconnective large pores (several hundred micrometer) and well-ordered mesopore channels (around 5 nm). Both Cu-MBG scaffolds and their ionic extracts could stimulate hypoxia-inducible factor (HIF)-1a and vascular endothelial growth factor(VEGF) expression in human bone marrow stromal cells(hBMSCs). In addition, both Cu-MBG scaffolds and their ionic extracts significantly promoted the osteogenic differentiation of hBMSCs by improving their bone-related gene expression (alkaline phosphatase (ALP), osteopontin(OPN) and osteocalcin (OCN)). Furthermore, Cu-MBG scaffolds could maintain a sustained release of ibuprofen and significantly inhibited the viability of bacteria. This study indicates that the incorporation of Cu2þ ions into MBG scaffolds significantly enhances hypoxia-like tissue reaction leading to the coupling of angiogenesis and osteogenesis. Cu2þ ions play an important role to offer the multifunctional properties of MBG scaffold system. This study has demonstrated that it is possible to develop multifunctional scaffolds by combining enhanced angiogenesis potential, osteostimulation, and antibacterial properties for the treatment of large bone defects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In dentinogenesis, certain growth factors, matrix proteoglycans, and proteins are directly or indirectly dependent on growth hormone. The hypothesis that growth hormone up-regulates the expression of enzymes, sialoproteins, and other extracellular matrix proteins implicated in the formation and mineralization of tooth and bone matrices was tested by the treatment of Lewis dwarf rats with growth hormone over 5 days. The molar teeth were processed for immunohistochemical demonstration of bone-alkaline phosphatase, bone morphogenetic proteins-2 and -4, osteocalcin, osteopontin, bone sialoprotein, and E11 protein. Odontoblasts responded to growth hormone by more cells expressing bone morphogenetic protein, alkaline phosphatase, osteocalcin, and osteopontin. No changes were found in bone sialoprotein or E11 protein expression. Thus, growth hormone may stimulate odontoblasts to express several growth factors and matrix proteins associated with dentin matrix biosynthesis in mature rat molars.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coal Seam Gas (CSG) production is achieved by extracting groundwater to depressurize coal seam aquifers in order to promote methane gas desorption from coal micropores. CSG waters are characteristically alkaline, have a neutral pH (~7), are of the Na-HCO3-Cl type, and exhibit brackish salinity. In 2004, a CSG exploration company carried out a gas flow test in an exploration well located in Maramarua (Waikato Region, New Zealand). This resulted in 33 water samples exhibiting noteworthy chemical variations induced by pumping. This research identifies the main causes of hydrochemical variations in CSG water, makes recommendations to manage this effect, and discusses potential environmental implications. Hydrochemical variations were studied using Factor Analysis and this was supported with hydrochemical modelling and a laboratory experiment. This reveals carbon dioxide (CO2) degassing as the principal source of hydrochemical variability (about 33%). Factor Analysis also shows that major ion variations could also reflect changes in hydrochemical composition induced by different pumping regimes. Subsequent chloride, calcium, and TDS variations could be a consequence of analytical errors potentially committed during laboratory determinations. CSG water chemical variations due to degassing during pumping can be minimized with good completion and production techniques; variations due to sample degassing can be controlled by taking precautions during sampling, transit, storage and analysis. In addition, the degassing effect observed in CSG waters can lead to an underestimation of their potential environmental effect. Calcium precipitation due to exposure to normal atmospheric pressure results in a 23% increase in SAR values from Maramarua CSG water samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the potential of an extract of Lycopodium obscurum L.; stigmastane-3-oxo-21-oic acid (SA), to enhance osteogensis of mouse osteoblastic MC3T3-E1 cells. SA at a concentration of 16 µM was found to have no significant effect upon the viability of the cells, thus concentrations of 8 µM and 16 µM of SA were used in all further experiments. Both concentrations of SA had an inhibitory affect upon alkaline phosphatase activity (ALP) after 8 days incubation, however, after 16 days activity was restored to control levels. However Alizarin red S staining showed increased levels of mineralization for both concentrations after 16 days culture. Real time PCR showed inhibition of genes Runx2 and Osterix genes responsible for the up-regulation of ALP. However early time point (8 days) up-regulation of bone matrix mineralization genes OPN and OCN, and late time point (16 days) up-regulation of both Jun-D and Fra-2 mRNA expression was significantly enhanced. These results suggest a potential me-chanism of SA in enhancing bone fracture healing is through the up-regulating bone matrix minera-lization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The composition of the lithosphere can be fundamentally altered by long-lived subduction processes such that subduction-modified lithosphere can survive for 100's Myrs. Incorrect petrotectonic interpretations result when spatial-temporal-compositional trends of, and source contributions to, magmatism are not properly considered. Western Mexico has had protracted Cenozoic magmatism developed mostly in-board of active oceanic plate subduction beneath western North America. A broad range of igneous compositions from basalt to high-silica rhyolite were erupted with intermediate to silicic compositions in particular, showing calc-alkaline and other typical subduction-related geochemical signatures. A major Oligocene rhyolitic ignimbrite “flare-up” (>300,000 km3) switched to a bimodal volcanic phase in the Early Miocene (~100,000 km3), associated with distributed extension and opening of numerous grabens. Extension became more focussed ~18 Ma resulting in localised volcanic activity along the future site of the Gulf of California. This localised volcanism (known as the Comondú “arc”) was dominantly effusive and andesite-dacite in composition. Past tectonic interpretations of Comondú-age volcanism may have been incorrect as these regional temporal-compositional changes are alternatively interpreted as a result of increased mixing of mantle-derived basaltic and crust-derived rhyolitic magmas in an active rift environment rather than fluid flux melting of the mantle wedge above the subducting Guadalupe Plate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral tooeleite Fe6(AsO3)4SO4(OH)4�4H2O is secondary ferric arsenite sulphate mineral which has environmental significance for arsenic remediation because of its high stability in the regolith. The mineral has been studied by X-ray diffraction (XRD), infrared (IR) and Raman spectroscopy. The XRD result indicates tooeleite can form more crystalline solids in an acid environment than in an alkaline environment. Infrared spectroscopy identifies moderately intense band at 773 cm�1 assigned to AsO3� 3 symmetric stretching vibration. Raman spectroscopy identifies three bands at 803, 758 and 661 cm�1 assigned to the symmetric and antisymmetric stretching vibrations of AsO3� 3 and As-OH stretching vibration respectively. In addition, the infrared bands observed at 1116, 1040, 1090, 981 and 616 cm�1, are assigned to the m3, m1 and m4 modes of SO2� 4 . The same bands are observed at 1287, 1085, 983 and 604 cm�1 in the Raman spectrum. As3d band at binding energy of 44.05 eV in XPS confirms arsenic valence of tooeleite is +3. These characteristic bands in the IR and Raman spectra provide useful basis for identifying the mineral tooeleite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of hypoxia-mimicking bone tissue engineering scaffolds is of great importance in stimulating angiogenesis for bone regeneration. Dimethyloxallyl glycine (DMOG) is a cell-permeable, competitive inhibitor of hypoxia-inducible factor prolyl hydroxylase (HIF-PH), which can stabilize hypoxia-inducible factor 1α (HIF-1α) expression. The aim of this study was to develop hypoxia-mimicking scaffolds by delivering DMOG in mesoporous bioactive glass (MBG) scaffolds and to investigate whether the delivery of DMOG could induce a hypoxic microenvironment for human bone marrow stromal cells (hBMSC). MBG scaffolds with varied mesoporous structures (e.g. surface area and mesopore volume) were prepared by controlling the contents of mesopore-template agent. The composition, large-pore microstructure and mesoporous properties of MBG scaffolds were characterized. The effect of mesoporous properties on the loading and release of DMOG in MBG scaffolds was investigated. The effects of DMOG delivery on the cell morphology, cell viability, HIF-1α stabilization, vascular endothelial growth factor (VEGF) secretion and bone-related gene expression (alkaline phosphatase, ALP; osteocalcin, OCN; and osteopontin, OPN) of hBMSC in MBG scaffolds were systematically investigated. The results showed that the loading and release of DMOG in MBG scaffolds can be efficiently controlled by regulating their mesoporous properties via the addition of different contents of mesopore-template agent. DMOG delivery in MBG scaffolds had no cytotoxic effect on the viability of hBMSC. DMOG delivery significantly induced HIF-1α stabilization, VEGF secretion and bone-related gene expression of hBMSC in MBG scaffolds in which DMOG counteracted the effect of HIF-PH and stabilized HIF-1α expression under normoxic condition. Furthermore, it was found that MBG scaffolds with slow DMOG release significantly enhanced the expression of bone-related genes more than those with instant DMOG release. The results suggest that the controllable delivery of DMOG in MBG scaffolds can mimic a hypoxic microenvironment, which not only improves the angiogenic capacity of hBMSC, but also enhances their osteogenic differentiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colemanite CaB3O4(OH)3 H2O is a secondary borate mineral formed from borax and ulexite in evaporate deposits of alkaline lacustrine sediments. The basic structure of colemanite contains endless chains of interlocking BO2(OH) triangles and BO3(OH) tetrahedrons with the calcium, water and extra hydroxide units interspersed between these chains. The Raman spectra of colemanite is characterized by an intense band at 3605 cm-1 assigned to the stretching vibration of OH units and a series of bands at 3182, 3300, 3389 and 3534 cm-1 assigned to water stretching vibrations. Infrared bands are observed in similar positions. The BO stretching vibrations of the trigonal and tetrahedral boron are characterized by Raman bands at 876, 1065 and 1084 cm-1. The OBO bending mode is defined by the Raman band at 611 cm-1. It is important to characterize the very wide range of borate minerals including colemanite because of the very wide range of applications of boron containing minerals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herbal Fructus Corni is a folk medicine with a long history of safe use for treating osteoporosis in postmenopausal women or elderly men in Asia. Sweroside is a bioactive herbal ingredient isolated from Fructus Corni, which has been widely used for the treatment of osteoporosis in traditional Chinese medicine (TCM). Unfortunately, the working mechanisms of this compound are difficult to determine and thus remain unclear. The aim of the study was performed to determine the potential molecular mechanism of the anti-osteoporotic effect of sweroside on the human MG-63 cells and rat osteoblasts. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used to observe the effect of sweroside on cell proliferation. The activity of alkaline phosphatase (ALP) and the amount of osteocalcin were also assayed the cell differentiation. Sweroside significantly increased the proliferation of human MG-63 cells and rat osteoblasts (P<0.01). It increased the activity of ALP, and osteocalcin was also elevated in response to sweroside (P<0.05). Of note, flowcytometer assay showed that sweroside can attenuate and inhibit apoptosis. Sweroside has a direct osteogenic effect on the proliferation and differentiation of cultured human MG-63 cells and rat osteoblasts in vitro. These data will help in understanding the molecular mechanisms of therapeutic efficacy of sweroside, and highlight insights into drug discovery. In the current study, sweroside has been suggested to be a promising osteoporosis therapeutic natural product.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polycaprolactone (PCL) is a resorbable polymer used extensively in bone tissue engineering owing to good structural properties and processability. Strontium substituted bioactive glass (SrBG) has the ability to promote osteogenesis and may be incorporated into scaffolds intended for bone repair. Here we describe for the first time, the development of a PCL-SrBG composite scaffold incorporating 10% (weight) of SrBG particles into PCL bulk, produced by the technique of melt-electrospinning. We show that we are able to reproducibly manufacture composite scaffolds with an interconnected porous structure and, furthermore, these scaffolds were demonstrated to be non-cytotoxic in vitro. Ions present in the SrBG component were shown to dissolve into cell culture media and promoted precipitation of a calcium phosphate layer on the scaffold surface which in turn led to noticeably enhanced alkaline phosphatase activity in MC3T3-E1 cells compared to PLC-only scaffolds. These results suggest that melt-electrospun PCL-SrBG composite scaffolds show potential to become effective bone graft substitutes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nanostructured surface of biomaterials plays an important role in improving their in vitro cellular bioactivity as well as stimulating in vivo tissue regeneration. Inspired by the mussel’s adhesive versatility, which is thought to be due to the plaque–substrate interface being rich in 3,4-dihydroxy-L-phenylalamine (DOPA) and lysine amino acids, in this study we developed a self-assembly method to prepare a uniform calcium phosphate (Ca-P)/polydopamine composite nanolayer on the surface of b-tricalcium phosphate (b-TCP) bioceramics by soaking b-TCP bioceramics in Tris–dopamine solution. It was found that the addition of dopamine, reaction temperature and reaction time are three key factors inducing the formation of a uniform Ca-P/polydopamine composite nanolayer. The formation mechanism of a Ca-P/polydopamine composite nanolayer involved two important steps: (i) the addition of dopamine to Tris–HCl solution decreases the pH value and accelerates Ca and P ionic dissolution from the crystal boundaries of b-TCP ceramics; (ii) dopamine is polymerized to form self-assembled polydopamine film and, at the same time, nanosized Ca-P particles are mineralized with the assistance of polydopamine, in which the formation of polydopamine occurs simultaneously with Ca-P mineralization (formation of nanosized microparticles composed of calcium phosphate-based materials), and finally a self-assembled Ca-P/polydopamine composite nanolayer forms on the surface of the b-TCP ceramics. Furthermore, the formed self-assembled Ca-P/polydopamine composite nanolayer significantly enhances the surface roughness and hydrophilicity of b-TCP ceramics, and stimulates the attachment, proliferation, alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, COL1 and Runx2) of human bone marrow stromal cells. Our results suggest that the preparation of self-assembled Ca-P/polydopamine composite nanolayers is a viable method to modify the surface of biomaterials by significantly improving their surface physicochemical properties and cellular bioactivity for bone regeneration application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To optimize the animal model of liver injury that can properly represent the pathological characteristics of dampness-heat jaundice syndrome of traditional Chinese medicine. METHODS: The liver injury in the model rat was induced by alpha-naphthylisothiocyanate (ANIT) and carbon tetrachloride (CCl(4) ) respectively, and the effects of Yinchenhao Decoction (, YCHD), a proved effective Chinese medical formula for treating the dampness-heat jaundice syndrome in clinic, on the two liver injury models were evaluated by analyzing the serum level of alanine aminotransferase (ALT), asparate aminotransferase (AST), alkaline phosphatase (ALP), malondialchehyche (MDA), total bilirubin (T-BIL), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) as well as the ratio of liver weight to body weight. The experimental data were analyzed by principal component analytical method of pattern recognition. RESULTS: The ratio of liver weight to body weight was significantly elevated in the ANIT and CCl(4) groups when compared with that in the normal control (P<0.01). The contents of ALT and T-BIL were significantly higher in the ANIT group than in the normal control (P<0.05,P<0.01), and the levels of AST, ALT and ALP were significantly elevated in CCl(4) group relative to those in the normal control P<0.01). In the YCHD group, the increase in AST, ALT and ALP levels was significantly reduced (P<0.05, P<0.01), but with no significant increase in serum T-BIL. In the CCl(4) intoxicated group, the MDA content was significantly increased and SOD, GSH-PX activities decreased significantly compared with those in the normal control group, respectively (P<0.01). The increase in MDA induced by CCl(4) was significantly reduced by YCHD P<0.05). CONCLUSION: YCHD showed significant effects on preventing liver injury progression induced by CCl(4), and the closest or most suitable animal model for damp-heat jaundice syndrome may be the one induced by CCl(4).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of the electrodeposition of polycrystalline gold in aqueous solution is important from the viewpoint that in electrocatalysis applications ill-defined micro- and nanostructured surfaces are often employed. In this work, the morphology of gold was controlled by the electrodeposition potential and the introduction of Pb(CH3COO)2•3H2O into the plating solution to give either smooth or nanostructured gold crystallites or large dendritic structures which have been characterized by scanning electron microscopy (SEM). The latter structures were achieved through a novel in situ galvanic replacement of lead with AuCl4−(aq) during the course of gold electrodeposition. The electrochemical behavior of electrodeposited gold in the double layer region was studied in acidic and alkaline media and related to electrocatalytic performance for the oxidation of hydrogen peroxide and methanol. It was found that electrodeposited gold is a significantly better electrocatalyst than a polished gold electrode; however, performance is highly dependent on the chosen deposition parameters. The fabrication of a deposit with highly active surface states, comparable to those achieved at severely disrupted metal surfaces through thermal and electrochemical methods, does not result in the most effective electrocatalyst. This is due to significant premonolayer oxidation that occurs in the double layer region of the electrodeposited gold. In particular, in alkaline solution, where gold usually shows the most electrocatalytic activity, these active surface states may be overoxidized and inhibit the electrocatalytic reaction. However, the activity and morphology of an electrodeposited film can be tailored whereby electrodeposited gold that exhibits nanostructure within the crystallites on the surface demonstrated enhanced electrocatalytic activity compared to smaller smooth gold crystallites and larger dendritic structures in potential regions well within the double layer region.