144 resultados para agricultural machine
Resumo:
Nitrous oxide (N2O) is primarily produced by the microbially-mediated nitrification and denitrification processes in soils. It is influenced by a suite of climate (i.e. temperature and rainfall) and soil (physical and chemical) variables, interacting soil and plant nitrogen (N) transformations (either competing or supplying substrates) as well as land management practices. It is not surprising that N2O emissions are highly variable both spatially and temporally. Computer simulation models, which can integrate all of these variables, are required for the complex task of providing quantitative determinations of N2O emissions. Numerous simulation models have been developed to predict N2O production. Each model has its own philosophy in constructing simulation components as well as performance strengths. The models range from those that attempt to comprehensively simulate all soil processes to more empirical approaches requiring minimal input data. These N2O simulation models can be classified into three categories: laboratory, field and regional/global levels. Process-based field-scale N2O simulation models, which simulate whole agroecosystems and can be used to develop N2O mitigation measures, are the most widely used. The current challenge is how to scale up the relatively more robust field-scale model to catchment, regional and national scales. This paper reviews the development history, main construction components, strengths, limitations and applications of N2O emissions models, which have been published in the literature. The three scale levels are considered and the current knowledge gaps and challenges in modelling N2O emissions from soils are discussed.
Resumo:
Historically, the development philosophy for the two Territories of Papua and New Guinea (known as TPNG, formerly two territories, Papua and New Guinea) was equated with economic development, with a focus on agricultural development. To achieve the modification or complete change in indigenous farming systems the Australian Government’s Department of External Territories adopted and utilised a programme based on agricultural extension. Prior to World War II, under Australian administration, the economic development of these two territories, as in many colonies of the time, was based on the institution of the plantation. Little was initiated in agriculture development for indigenous people. This changed after World War II to a rationale based on the promotion and advancement of primary industry, but also came to include indigenous farmers. To develop agriculture within a colony it was thought that a modification to, or in some cases the complete transformation of, existing farming systems was necessary to improve the material welfare of the population. It was also seen to be a guarantee for the future national interest of the sovereign state after independence was granted. The Didiman and Didimisis became the frontline, field operatives of this theoretical model of development. This thesis examines the Didiman’s field operations, the structural organisation of agricultural administration and the application of policy in the two territories.
Resumo:
When asking the question, ``How can institutions design science policies for the benefit of decision makers?'' Sarewitz and Pielke Sarewitz, D., Pielke Jr., R.A., this issue. The neglected heart of science policy: reconciling supply of and demand for science. Environ. Sci. Policy 10] posit the idea of ``reconciling supply and demand of science'' as a conceptual tool for assessment of science programs. We apply the concept to the U.S. Department of Agriculture's (USDA) carbon cycle science program. By evaluating the information needs of decision makers, or the ``demand'', along with the supply of information by the USDA, we can ascertain where matches between supply and demand exist, and where science policies might miss opportunities. We report the results of contextual mapping and of interviews with scientists at the USDA to evaluate the production and use of current agricultural global change research, which has the stated goal of providing ``optimal benefit'' to decision makers on all levels. We conclude that the USDA possesses formal and informal mechanisms by which scientists evaluate the needs of users, ranging from individual producers to Congress and the President. National-level demands for carbon cycle science evolve as national and international policies are explored. Current carbon cycle science is largely derived from those discussions and thus anticipates the information needs of producers. However, without firm agricultural carbon policies, such information is currently unimportant to producers. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Neural networks (NNs) are discussed in connection with their possible use in induction machine drives. The mathematical model of the NN as well as a commonly used learning algorithm is presented. Possible applications of NNs to induction machine control are discussed. A simulation of an NN successfully identifying the nonlinear multivariable model of an induction-machine stator transfer function is presented. Previously published applications are discussed, and some possible future applications are proposed.
Resumo:
The design and implementation of a high-power (2 MW peak) vector control drive is described. The inverter switching frequency is low, resulting in high-harmonic-content current waveforms. A block diagram of the physical system is given, and each component is described in some detail. The problem of commanded slip noise sensitivity, inherent in high-power vector control drives, is discussed, and a solution is proposed. Results are given which demonstrate the successful functioning of the system
Resumo:
There is a paucity of data on the distribution of Cicadellidae (leafhoppers) in Australia. This study quantifies the relative abundance, seasonal activity and diversity of leafhoppers in the Ovens Valley region of north-east Victoria, Australia. Species diversity and abundance was assessed at four field sites in and around the field borders of commercially grown tobacco crops using three sampling techniques (pan trap, sticky trap and sweep net). Over 51 000 leafhopper samples were collected, with 57 species from 11 subfamilies and 19 tribes identified. Greater numbers and diversity of leafhoppers were collected in yellow pan traps. The predominant leafhopper collected was Orosius orientalis (Matsumura). Twenty-three leafhopper species were recorded for the first time in Victoria and eight economically important pest species were recorded. Seasonal activity of selected leafhopper species, covering two sampling seasons, is presented.
Resumo:
Agricultural adoption of innovation has traditionally been described as slow to diffuse. This paper therefore describes a case study grounded in PD to address a disruptive technology/system within the livestock industry. Results of the process were positive, as active engagement of stakeholders returned rich data. The contribution of the work is also presented as grounds for further design research in the livestock industry.
Resumo:
In this paper, we presented an automatic system for precise urban road model reconstruction based on aerial images with high spatial resolution. The proposed approach consists of two steps: i) road surface detection and ii) road pavement marking extraction. In the first step, support vector machine (SVM) was utilized to classify the images into two categories: road and non-road. In the second step, road lane markings are further extracted on the generated road surface based on 2D Gabor filters. The experiments using several pan-sharpened aerial images of Brisbane, Queensland have validated the proposed method.
Resumo:
This paper reports on the empirical comparison of seven machine learning algorithms in texture classification with application to vegetation management in power line corridors. Aiming at classifying tree species in power line corridors, object-based method is employed. Individual tree crowns are segmented as the basic classification units and three classic texture features are extracted as the input to the classification algorithms. Several widely used performance metrics are used to evaluate the classification algorithms. The experimental results demonstrate that the classification performance depends on the performance matrix, the characteristics of datasets and the feature used.
Resumo:
A significant proportion of the cost of software development is due to software testing and maintenance. This is in part the result of the inevitable imperfections due to human error, lack of quality during the design and coding of software, and the increasing need to reduce faults to improve customer satisfaction in a competitive marketplace. Given the cost and importance of removing errors improvements in fault detection and removal can be of significant benefit. The earlier in the development process faults can be found, the less it costs to correct them and the less likely other faults are to develop. This research aims to make the testing process more efficient and effective by identifying those software modules most likely to contain faults, allowing testing efforts to be carefully targeted. This is done with the use of machine learning algorithms which use examples of fault prone and not fault prone modules to develop predictive models of quality. In order to learn the numerical mapping between module and classification, a module is represented in terms of software metrics. A difficulty in this sort of problem is sourcing software engineering data of adequate quality. In this work, data is obtained from two sources, the NASA Metrics Data Program, and the open source Eclipse project. Feature selection before learning is applied, and in this area a number of different feature selection methods are applied to find which work best. Two machine learning algorithms are applied to the data - Naive Bayes and the Support Vector Machine - and predictive results are compared to those of previous efforts and found to be superior on selected data sets and comparable on others. In addition, a new classification method is proposed, Rank Sum, in which a ranking abstraction is laid over bin densities for each class, and a classification is determined based on the sum of ranks over features. A novel extension of this method is also described based on an observed polarising of points by class when rank sum is applied to training data to convert it into 2D rank sum space. SVM is applied to this transformed data to produce models the parameters of which can be set according to trade-off curves to obtain a particular performance trade-off.
Resumo:
The ability to accurately predict the remaining useful life of machine components is critical for machine continuous operation and can also improve productivity and enhance system’s safety. In condition-based maintenance (CBM), maintenance is performed based on information collected through condition monitoring and assessment of the machine health. Effective diagnostics and prognostics are important aspects of CBM for maintenance engineers to schedule a repair and to acquire replacement components before the components actually fail. Although a variety of prognostic methodologies have been reported recently, their application in industry is still relatively new and mostly focused on the prediction of specific component degradations. Furthermore, they required significant and sufficient number of fault indicators to accurately prognose the component faults. Hence, sufficient usage of health indicators in prognostics for the effective interpretation of machine degradation process is still required. Major challenges for accurate longterm prediction of remaining useful life (RUL) still remain to be addressed. Therefore, continuous development and improvement of a machine health management system and accurate long-term prediction of machine remnant life is required in real industry application. This thesis presents an integrated diagnostics and prognostics framework based on health state probability estimation for accurate and long-term prediction of machine remnant life. In the proposed model, prior empirical (historical) knowledge is embedded in the integrated diagnostics and prognostics system for classification of impending faults in machine system and accurate probability estimation of discrete degradation stages (health states). The methodology assumes that machine degradation consists of a series of degraded states (health states) which effectively represent the dynamic and stochastic process of machine failure. The estimation of discrete health state probability for the prediction of machine remnant life is performed using the ability of classification algorithms. To employ the appropriate classifier for health state probability estimation in the proposed model, comparative intelligent diagnostic tests were conducted using five different classifiers applied to the progressive fault data of three different faults in a high pressure liquefied natural gas (HP-LNG) pump. As a result of this comparison study, SVMs were employed in heath state probability estimation for the prediction of machine failure in this research. The proposed prognostic methodology has been successfully tested and validated using a number of case studies from simulation tests to real industry applications. The results from two actual failure case studies using simulations and experiments indicate that accurate estimation of health states is achievable and the proposed method provides accurate long-term prediction of machine remnant life. In addition, the results of experimental tests show that the proposed model has the capability of providing early warning of abnormal machine operating conditions by identifying the transitional states of machine fault conditions. Finally, the proposed prognostic model is validated through two industrial case studies. The optimal number of health states which can minimise the model training error without significant decrease of prediction accuracy was also examined through several health states of bearing failure. The results were very encouraging and show that the proposed prognostic model based on health state probability estimation has the potential to be used as a generic and scalable asset health estimation tool in industrial machinery.
Resumo:
This paper presents an approach to predict the operating conditions of machine based on classification and regression trees (CART) and adaptive neuro-fuzzy inference system (ANFIS) in association with direct prediction strategy for multi-step ahead prediction of time series techniques. In this study, the number of available observations and the number of predicted steps are initially determined by using false nearest neighbor method and auto mutual information technique, respectively. These values are subsequently utilized as inputs for prediction models to forecast the future values of the machines’ operating conditions. The performance of the proposed approach is then evaluated by using real trending data of low methane compressor. A comparative study of the predicted results obtained from CART and ANFIS models is also carried out to appraise the prediction capability of these models. The results show that the ANFIS prediction model can track the change in machine conditions and has the potential for using as a tool to machine fault prognosis.