314 resultados para adaptive power control


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The numerical solution of stochastic differential equations (SDEs) has been focused recently on the development of numerical methods with good stability and order properties. These numerical implementations have been made with fixed stepsize, but there are many situations when a fixed stepsize is not appropriate. In the numerical solution of ordinary differential equations, much work has been carried out on developing robust implementation techniques using variable stepsize. It has been necessary, in the deterministic case, to consider the "best" choice for an initial stepsize, as well as developing effective strategies for stepsize control-the same, of course, must be carried out in the stochastic case. In this paper, proportional integral (PI) control is applied to a variable stepsize implementation of an embedded pair of stochastic Runge-Kutta methods used to obtain numerical solutions of nonstiff SDEs. For stiff SDEs, the embedded pair of the balanced Milstein and balanced implicit method is implemented in variable stepsize mode using a predictive controller for the stepsize change. The extension of these stepsize controllers from a digital filter theory point of view via PI with derivative (PID) control will also be implemented. The implementations show the improvement in efficiency that can be attained when using these control theory approaches compared with the regular stepsize change strategy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The well-known power system stabilizer (PSS) is used to generate supplementary control signals for the excitation system of a generator so as to damp low frequency oscillations in the power system concerned. Up to now, various kinds of PSS design methods have been proposed and some of them applied in actual power systems with different degrees. Given this background, the small-disturbance eigenvalue analysis and large-disturbance dynamic simulations in the time domain are carried out to evaluate the performances of four different PSS design methods, including the Conventional PSS (CPSS), Single-Neuron PSS (SNPSS), Adaptive PSS (APSS) and Multi-band PSS (MBPSS). To make the comparisons equitable, the parameters of the four kinds of PSSs are all determined by the steepest descent method. Finally, an 8-unit 24-bus power system is employed to demonstrate the performances of the four kinds of PSSs by the well-established eigenvalue analysis as well as numerous digital simulations, and some useful conclusions obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis was a step forward in improving the stability of power systems by applying new control and modelling techniques. The developed methods use the data obtained from voltage angle measurement devices which are synchronized with GPS signals to stabilize the system and avoid system-wide blackouts in the event of severe faults. New approaches were developed in this research for identifying and estimating reduced dynamic system models using phasor measurement units. The main goal of this research is achieved by integrating the developed methods to obtain a feasible wide-area control system for stabilizing the power systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper introduces the design of robust current and voltage control algorithms for a grid-connected three-phase inverter which is interfaced to the grid through a high-bandwidth three-phase LCL filter. The algorithms are based on the state feedback control which have been designed in a systematic approach and improved by using oversampling to deal with the issues arising due to the high-bandwidth filter. An adaptive loop delay compensation method has also been adopted to minimize the adverse effects of loop delay in digital controller and to increase the robustness of the control algorithm in the presence of parameter variations. Simulation results are presented to validate the effectiveness of the proposed algorithm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a new controller for the excitation system to improve rotor angle stability. The proposed controller uses energy function to predict desired flux for the generator to achieve improved first swing stability and enhanced system damping. The controller is designed through predicting the desired value of flux for the future step of the system and then obtaining appropriate supplementary control input for the excitation system. The simulations are performed on Single-Machine-Infinite-Bus system and the results verify the efficiency of the controller. The proposed method facilitates the excitation system with a feasible and reliable controller for severe disturbances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Increasing penetration of photovoltaic (PV) as well as increasing peak load demand has resulted in poor voltage profile for some residential distribution networks. This paper proposes coordinated use of PV and Battery Energy Storage (BES) to address voltage rise and/or dip problems. The reactive capability of PV inverter combined with droop based BES system is evaluated for rural and urban scenarios (having different R/X ratios). Results show that reactive compensation from PV inverters alone is sufficient to maintain acceptable voltage profile in an urban scenario (low resistance feeder), whereas, coordinated PV and BES support is required for the rural scenario (high resistance feeder). Constant as well as variable droop based BES schemes are analyzed. The required BES sizing and associated cost to maintain the acceptable voltage profile under both schemes is presented. Uncertainties in PV generation and load are considered, with probabilistic estimation of PV generation and randomness in load modeled to characterize the effective utilization of BES. Actual PV generation data and distribution system network data is used to verify the efficacy of the proposed method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A microgrid may contain a large number of distributed generators (DGs). These DGs can be either inertial or non-inertial, either dispatchable or non-dispatchable. Moreover, the DGs may operate in plug and play fashion. The combination of these various types of operation makes the microgrid control a challenging task, especially when the microgrid operates in an autonomous mode. In this paper, a new control algorithm for converter interfaced (dispatchable) DG is proposed which facilitates smooth operation in a hybrid microgrid containing inertial and non-inertial DGs. The control algorithm works satisfactorily even when some of the DGs operate in plug and play mode. The proposed strategy is validated through PSCAD simulation studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a new method for stabilizing disturbed power systems using wide area measurement and FACTS devices. The approach focuses on both first swing and damping stability of power systems following large disturbances. A two step control algorithm based on Lyapunov Theorem is proposed to be applied on the controllers to improve the power systems stability. The proposed approach is simulated on two test systems and the results show significant improvement in the first swing and damping stability of the test systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel intelligent online demand side management system is proposed for peak load management. The method also regulates the network voltage, balances the power in three phases and coordinates the battery storage discharge within the network. This method uses low cost controllers with low bandwidth two-way communication installed in costumers' premises and at distribution transformers to manage the peak load while maximizing customer satisfaction. A multi-objective decision making process is proposed to select the load(s) to be delayed or controlled. The efficacy of the proposed control system is verified through an event-based developed simulation in Matlab.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrification of vehicular systems has gained increased momentum in recent years with particular attention to constant power loads (CPLs). Since a CPL potentially threatens system stability, stability analysis of hybrid electric vehicle with CPLs becomes necessary. A new power buffer configuration with battery is introduced to mitigate the effect of instability caused by CPLs. Model predictive control (MPC) is applied to regulate the power buffer to decouple source and load dynamics. Moreover, MPC provides an optimal tradeoff between modification of load impedance, variation of dc-link voltage and battery current ripples. This is particularly important during transients or starting of system faults, since battery response is not very fast. Optimal tradeoff becomes even more significant when considering low-cost power buffer without battery. This paper analyzes system models for both voltage swell and voltage dip faults. Furthermore, a dual mode MPC algorithm is implemented in real time offering improved stability. A comprehensive set of experimental results is included to verify the efficacy of the proposed power buffer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: We examine the interaction between trait resilience and control in predicting coping and performance. Drawing on a person–environment fit perspective, we hypothesized resilient individuals would cope and perform better in demanding work situations when control was high. In contrast, those low in resilience would cope and perform better when control was low. Recognizing the relationship between trait resilience and performance also could be indirect, adaptive coping was examined as a mediating mechanism through which high control enables resilient individuals to demonstrate better performance. Methodology: In Study 1 (N = 78) and Study 2 (N = 94), participants completed a demanding inbox task in which trait resilience was measured and high and low control was manipulated. Study 3 involved surveying 368 employees on their trait resilience, control, and demand at work (at Time 1), and coping and performance 1 month later at Time 2. Findings: For more resilient individuals, high control facilitated problem-focused coping (Study 1, 2, and 3), which was indirectly associated with higher subjective performance (Study 1), mastery (Study 2), adaptive, and proficient performance (Study 3). For more resilient individuals, high control also facilitated positive reappraisal (Study 2 and 3), which was indirectly associated with higher adaptive and proficient performance (Study 3). Implications: Individuals higher in resilience benefit from high control because it enables adaptive coping. Originality/value: This research makes two contributions: (1) an experimental investigation into the interaction of trait resilience and control, and (2) investigation of coping as the mechanism explaining better performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This chapter focuses on the implementation of the TS (Tagaki-Sugino) fuzzy controller for the Doubly Fed Induction Generator (DFIG) based wind generator. The conventional PI control loops for mantaining desired active power and DC capacitor voltage is compared with the TS fuzzy controllers. DFIG system is represented by a third-order model where electromagnetic transients of the stator are neglected. The effectiveness of the TS-fuzzy controller on the rotor speed oscillations and the DC capacitor voltage variations of the DFIG damping controller on converter ratings is also investigated. The results from the time domain simulations are presented to elucidate the effectiveness of the TS-fuzzy controller over the conventional PI controller in the DFIG system. The proposed TS-fuzzy con-troller can improve the fault ride through capability of DFIG compared to the conventional PI controller.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modern power systems have become more complex due to the growth in load demand, the installation of Flexible AC Transmission Systems (FACTS) devices and the integration of new HVDC links into existing AC grids. On the other hand, the introduction of the deregulated and unbundled power market operational mechanism, together with present changes in generation sources including connections of large renewable energy generation with intermittent feature in nature, have further increased the complexity and uncertainty for power system operation and control. System operators and engineers have to confront a series of technical challenges from the operation of currently interconnected power systems. Among the many challenges, how to evaluate the steady state and dynamic behaviors of existing interconnected power systems effectively and accurately using more powerful computational analysis models and approaches becomes one of the key issues in power engineering. The traditional computing techniques have been widely used in various fields for power system analysis with varying degrees of success. The rapid development of computational intelligence, such as neural networks, fuzzy systems and evolutionary computation, provides tools and opportunities to solve the complex technical problems in power system planning, operation and control.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Power line inspection is a vital function for electricity supply companies but it involves labor-intensive and expensive procedures which are tedious and error-prone for humans to perform. A possible solution is to use an unmanned aerial vehicle (UAV) equipped with video surveillance equipment to perform the inspection. This paper considers how a small, electrically driven rotorcraft conceived for this application could be controlled by visually tracking the overhead supply lines. A dynamic model for a ducted-fan rotorcraft is presented and used to control the action of an Air Vehicle Simulator (AVS), consisting of a cable-array robot. Results show how visual data can be used to determine, and hence regulate in closed loop, the simulated vehicle’s position relative to the overhead lines.