188 resultados para Zero Variation
Resumo:
Extreme temperatures have been shown to have a detrimental effect on health. Hot temperatures can increase the risk of mortality, particularly in people suffering from cardiorespiratory diseases. Given the onset of climate change, it is critical that the impact of temperature on health is understood, so that effective public health strategies can correctly identify vulnerable groups within the population. However, while effects on mortality have been extensively studied, temperature–related morbidity has received less attention. This study applied a systematic review and meta–analysis to examine the current literature relating to hot temperatures and morbidity.
Resumo:
Computational models for cardiomyocyte action potentials (AP) often make use of a large parameter set. This parameter set can contain some elements that are fitted to experimental data independently of any other element, some elements that are derived concurrently with other elements to match experimental data, and some elements that are derived purely from phenomenological fitting to produce the desired AP output. Furthermore, models can make use of several different data sets, not always derived for the same conditions or even the same species. It is consequently uncertain whether the parameter set for a given model is physiologically accurate. Furthermore, it is only recently that the possibility of degeneracy in parameter values in producing a given simulation output has started to be addressed. In this study, we examine the effects of varying two parameters (the L-type calcium current (I(CaL)) and the delayed rectifier potassium current (I(Ks))) in a computational model of a rabbit ventricular cardiomyocyte AP on both the membrane potential (V(m)) and calcium (Ca(2+)) transient. It will subsequently be determined if there is degeneracy in this model to these parameter values, which will have important implications on the stability of these models to cell-to-cell parameter variation, and also whether the current methodology for generating parameter values is flawed. The accuracy of AP duration (APD) as an indicator of AP shape will also be assessed.
Resumo:
In this study, the delivery and portal imaging of one square-field and one conformal radiotherapy treatment was simulated using the Monte Carlo codes BEAMnrc and DOSXYZnrc. The treatment fields were delivered to a humanoid phantom from different angles by a 6 MV photon beam linear accelerator, with an amorphous-silicon electronic portal imaging device (a-Si EPID) used to provide images of the phantom generated by each field. The virtual phantom preparation code CTCombine was used to combine a computed-tomography-derived model of the irradiated phantom with a simple, rectilinear model of the a-Si EPID, at each beam angle used in the treatment. Comparison of the resulting experimental and simulated a-Si EPID images showed good agreement, within \[gamma](3%, 3 mm), indicating that this method may be useful in providing accurate Monte Carlo predictions of clinical a-Si EPID images, for use in the verification of complex radiotherapy treatments.
Resumo:
The likely phenological responses of plants to climate warming can be measured through experimental manipulation of field sites, but results are rarely validated against year-to-year changes in climate. Here, we describe the response of 1-5 years of experimental warming on phenology (budding, flowering and seed maturation) of six common subalpine plant species in the Australian Alps using the International Tundra Experiment (ITEX) protocol.2. Phenological changes in some species (particularly the forb Craspedia jamesii) were detected in experimental plots within a year of warming, whereas changes in most other species (the forb Erigeron bellidioides, the shrub Asterolasia trymalioides and the graminoids Carex breviculmis and Poa hiemata) did not develop until after 2-4 years; thus, there appears to be a cumulative effect of warming for some species across multiple years.3. There was evidence of changes in the length of the period between flowering and seed maturity in one species (P. hiemata) that led to a similar timing of seed maturation, suggesting compensation.4. Year-to-year variation in phenology was greater than variation between warmed and control plots and could be related to differences in thawing degree days (particularly, for E. bellidioides) due to earlier timing of budding and other events under warmer conditions. However, in Carex breviculmis, there was no association between phenology and temperature changes across years.5. These findings indicate that, although phenological changes occurred earlier in response to warming in all six species, some species showed buffered rather than immediate responses.6. Synthesis. Warming in ITEX open-top chambers in the Australian Alps produced earlier budding, flowering and seed set in several alpine species. Species also altered the timing of these events, particularly budding, in response to year-to-year temperature variation. Some species responded immediately, whereas in others the cumulative effects of warming across several years were required before a response was detected.
Resumo:
The central thesis in the article is that the venture creation process is different for innovative versus imitative ventures. This holds up; the pace of the process differs by type of venture as do, in line with theory-based hypotheses, the effects of certain human capital (HC) and social capital (SC) predictors. Importantly, and somewhat unexpectedly, the theoretically derived models using HC, SC, and certain controls are relatively successful explaining progress in the creation process for the minority of innovative ventures, but achieve very limited success for the imitative majority. This may be due to a rationalistic bias in conventional theorizing and suggests that there is need for considerable theoretical development regarding the important phenomenon of new venture creation processes. Another important result is that the building up of instrumental social capital, which we assess comprehensively and as a time variant construct, is important for making progress with both types of ventures, and increasingly, so as the process progresses. This result corroborates with stronger operationalization and more appropriate analysis method what previously published research has only been able to hint at.
Resumo:
Understanding information technology’s (ITs) contribution to business value is an imperative issue, and while we have attempted to untangle the relationship between IT and business value with some success, our knowledge of specific factors leading to ITs contribution to business value still remains limited. In this paper we propose that complementing IT resources, by establishing a sound IT platform with capable organisational resources may aid in ITs ability to contribute to business value. We suggest that performance measurement of this contribution be undertaken at the business process level first, and then mapped through to firm level performance measurement to obtain a better understanding of the path of IT business value contribution.
Resumo:
Purpose. To investigate whether diurnal variation occurs in retinal thickness measures derived from spectral domain optical coherence tomography (SD-OCT). Methods. Twelve healthy adult subjects had retinal thickness measured with SD-OCT every 2 h over a 10 h period. At each measurement session, three average B-scan images were derived from a series of multiple B-scans (each from a 5 mm horizontal raster scan along the fovea, containing 1500 A-scans/B-scan) and analyzed to determine the thickness of the total retina, as well as the thickness of the outer retinal layers. Average thickness values were calculated at the foveal center, at the 0.5 mm diameter foveal region, and for the temporal parafovea (1.5 mm from foveal center) and nasal parafovea (1.5 mm from foveal center). Results. Total retinal thickness did not exhibit significant diurnal variation in any of the considered retinal regions (p > 0.05). Evidence of significant diurnal variation was found in the thickness of the outer retinal layers (p < 0.05), with the most prominent changes observed in the photoreceptor layers at the foveal center. The photoreceptor inner and outer segment layer thickness exhibited mean amplitude (peak to trough) of daily change of 7 ± 3 μm at the foveal center. The peak in thickness was typically observed at the third measurement session (mean measurement time, 13:06). Conclusions. The total retinal thickness measured with SD-OCT does not exhibit evidence of significant variation over the course of the day. However, small but significant diurnal variation occurs in the thickness of the foveal outer retinal layers.
Resumo:
The effects of tumour motion during radiation therapy delivery have been widely investigated. Motion effects have become increasingly important with the introduction of dynamic radiotherapy delivery modalities such as enhanced dynamic wedges (EDWs) and intensity modulated radiation therapy (IMRT) where a dynamically collimated radiation beam is delivered to the moving target, resulting in dose blurring and interplay effects which are a consequence of the combined tumor and beam motion. Prior to this work, reported studies on the EDW based interplay effects have been restricted to the use of experimental methods for assessing single-field non-fractionated treatments. In this work, the interplay effects have been investigated for EDW treatments. Single and multiple field treatments have been studied using experimental and Monte Carlo (MC) methods. Initially this work experimentally studies interplay effects for single-field non-fractionated EDW treatments, using radiation dosimetry systems placed on a sinusoidaly moving platform. A number of wedge angles (60º, 45º and 15º), field sizes (20 × 20, 10 × 10 and 5 × 5 cm2), amplitudes (10-40 mm in step of 10 mm) and periods (2 s, 3 s, 4.5 s and 6 s) of tumor motion are analysed (using gamma analysis) for parallel and perpendicular motions (where the tumor and jaw motions are either parallel or perpendicular to each other). For parallel motion it was found that both the amplitude and period of tumor motion affect the interplay, this becomes more prominent where the collimator tumor speeds become identical. For perpendicular motion the amplitude of tumor motion is the dominant factor where as varying the period of tumor motion has no observable effect on the dose distribution. The wedge angle results suggest that the use of a large wedge angle generates greater dose variation for both parallel and perpendicular motions. The use of small field size with a large tumor motion results in the loss of wedged dose distribution for both parallel and perpendicular motion. From these single field measurements a motion amplitude and period have been identified which show the poorest agreement between the target motion and dynamic delivery and these are used as the „worst case motion parameters.. The experimental work is then extended to multiple-field fractionated treatments. Here a number of pre-existing, multiple–field, wedged lung plans are delivered to the radiation dosimetry systems, employing the worst case motion parameters. Moreover a four field EDW lung plan (using a 4D CT data set) is delivered to the IMRT quality control phantom with dummy tumor insert over four fractions using the worst case parameters i.e. 40 mm amplitude and 6 s period values. The analysis of the film doses using gamma analysis at 3%-3mm indicate the non averaging of the interplay effects for this particular study with a gamma pass rate of 49%. To enable Monte Carlo modelling of the problem, the DYNJAWS component module (CM) of the BEAMnrc user code is validated and automated. DYNJAWS has been recently introduced to model the dynamic wedges. DYNJAWS is therefore commissioned for 6 MV and 10 MV photon energies. It is shown that this CM can accurately model the EDWs for a number of wedge angles and field sizes. The dynamic and step and shoot modes of the CM are compared for their accuracy in modelling the EDW. It is shown that dynamic mode is more accurate. An automation of the DYNJAWS specific input file has been carried out. This file specifies the probability of selection of a subfield and the respective jaw coordinates. This automation simplifies the generation of the BEAMnrc input files for DYNJAWS. The DYNJAWS commissioned model is then used to study multiple field EDW treatments using MC methods. The 4D CT data of an IMRT phantom with the dummy tumor is used to produce a set of Monte Carlo simulation phantoms, onto which the delivery of single field and multiple field EDW treatments is simulated. A number of static and motion multiple field EDW plans have been simulated. The comparison of dose volume histograms (DVHs) and gamma volume histograms (GVHs) for four field EDW treatments (where the collimator and patient motion is in the same direction) using small (15º) and large wedge angles (60º) indicates a greater mismatch between the static and motion cases for the large wedge angle. Finally, to use gel dosimetry as a validation tool, a new technique called the „zero-scan method. is developed for reading the gel dosimeters with x-ray computed tomography (CT). It has been shown that multiple scans of a gel dosimeter (in this case 360 scans) can be used to reconstruct a zero scan image. This zero scan image has a similar precision to an image obtained by averaging the CT images, without the additional dose delivered by the CT scans. In this investigation the interplay effects have been studied for single and multiple field fractionated EDW treatments using experimental and Monte Carlo methods. For using the Monte Carlo methods the DYNJAWS component module of the BEAMnrc code has been validated and automated and further used to study the interplay for multiple field EDW treatments. Zero-scan method, a new gel dosimetry readout technique has been developed for reading the gel images using x-ray CT without losing the precision and accuracy.
Resumo:
Nitrate reduction with nanoscale zero-valent iron (NZVI) was reported as a potential technology to remove nitrate from nitrate-contaminated water. In this paper, nitrate reduction with NZVI prepared by hydrogen reduction of natural goethite (NZVI-N, -N represents natural goethite) and hydrothermal goethite (NZVI-H, -H represents hydrothermal goethite) was conducted. Besides, the effects of reaction time, nitrate concentration, iron-to-nitrate ratio on nitrate removal rate over NZVI-H and NZVI-N were investigated. To prove their excellent nitrate reduction capacities, NZVI-N and NZVI-H were compared with ordinary zero-valent iron (OZVI-N) through the static experiments. Based on all above investigations, the mechanism of nitrate reduction with NZVI-N was proposed. The result showed that reaction time, nitrate concentration, iron-to-nitrate ratio played an important role in nitrate reduction by NZVI-N and NZVI-H. Compared with OZVI, NZVI-N and NZVI-H showed little relationship with pH. And NZVI-N for nitrate composition offers a higher stability than NZVI-H because of the existence of Al-substitution. Furthermore, NZVI-N, prepared by hydrogen reduction of goethite, has higher activity for nitrate reduction and the products contain hydrogen, nitrogen, NH 4 +, a little nitrite, but no NOx, meanwhile NZVI-N was oxidized to Fe 2+. It is a relatively easy and cost-effective method for nitrate removal, so NZVI-N reducing nitrate has a great potential application in nitrate removal of groundwater. © 2012 Elsevier B.V.