61 resultados para Yb3Al5O12 crystal
Resumo:
The structures of the ammonium salts of phenoxyacetic acid, NH4+ C8H6O3- (I), (4-fluorophenoxy)acetic acid NH4+ C8H5FO3- (II) and the herbicidally active (4-chloro-2-methylphenoxy)acetic acid (MCPA), NH4+ C9H8ClO3-. 0.5(H2O) (III) have been determined. All have two-dimensional layered structures based on inter-species ammonium N-H...O hydrogen-bonding associations which give core substructures consisting primarily of conjoined cyclic motifs. Crystals of (I) and (II) are isomorphous with the core comprising R2/1(5), R2/1(4) and centrosymmetric R2/4(8) ring motifs, giving two-dimensional layers lying parallel to (100). In (III), the water molecule of solvation lies on a crystallographic twofold rotation axis and bridges two carboxyl O-atoms in an R4/4(12) hydrogen-bonded motif, creating two R3/4(10) rings which together with a conjoined centrosymmetric R2/4(8) ring incorporating both ammonium cations, generate two-dimensional layers lying parallel to (100). No pi-pi ring associations are present in any of the structures.
Resumo:
In the structure of the title compound, (C10H18N2)2+, 2(NO3)-, the nitrate salt of 4-(N,N-diethylamino)aniline, the two ethyl groups lie almost perpendicular to the plane of the benzene ring [ring to ethyl C-C-N-C torsion angles, -59.5(2) and 67.5(3)deg.]. The aminium groups of the cation form inter-species N-H...O hydrogen bonds with the nitro O-atoms of both anions giving one-dimensional chains extending along c and are extended into a two-dimensional network structure lying parallel to (010). Weak C-H...O hydrogen-bonding associations are also present.
Resumo:
The anhydrous salts of 1H-indole-3-ethanamine (tryptamine) with isomeric (2,4-dichlorophenoxy)acetic acid (2,4-D) and (3,5-dichlorophenoxy)acetic (3,5-D), C10H13N2+ (C8H5Cl2O3)-, [(I) and (II), respectively] have been determined and their one-dimensional hydrogen-bonded polymeric structures are described. In the crystal of (I),the aminium H-atoms are involved in three separate inter-species N-H...O hydrogen-bonding interactions, two with carboxyl O-atom acceptors and the third in an asymmetric three-centre bidentate carboxyl O,O' chelate [graph set R2/1(4)]. The indole H-atom forms an N-H...O~carboxyl~ hydrogen bond, extending the chain structure along the b axial direction. In (II), two of the three aminium H-atoms are also involved in N-H...O(carboxyl) hydrogen bonds similar to (I) but with the third, a three-centre asymmetric interaction with carboxyl and phenoxy O-atoms is found [graph set R2/1(5)]. The chain polymeric extension is also along b. There are no pi--pi ring interactions in either of the structures. The aminium side chain conformations differ significantly between the two structures, reflecting the conformational ambivalence of the tryptaminium cation, as found also in the benzoate salts.
Resumo:
This paper investigates copyright law and public architecture in the context of cultural institutions of Australia. Part 1 examines the case of the Sydney Opera House to illustrate the past position of architects in respect of copyright law. It goes onto consider the framework laid down by the Copyright Amendment (Moral Rights) Act 2000 (Cth) to resolve copyright disputes over moral rights and architecture. Part 2 considers the argument over the proposed renovations to the National Gallery of Australia between Dr Brian Kennedy and the original architect Colin Madigan. Part 3 finally deals with the allegations that Ashton Raggatt McDougall, the architects of the National Museum of Australia, plagiarised the designs of Daniel Libeskind for the Jewish Berlin Museum.
Resumo:
In the structure of the title complex [[Na(H2O)3]+ (C6H2Cl3N2O2)-^ . 3(H2O)]n, the Na salt of the herbicide picloram, the cation is a polymeric chain structure, based on doubly water-bridged NaO5 trigonal bipyramidal complex units which have in addition, a singly-bonded monodentate water molecule. Each of the bridges within the chain which lies along the a cell direction is centrosymmetric with Na...Na separations of 3.4807(16) and 3.5109(16)Ang. In the crystal, there are three water molecules of solvation and these, as well as the coordinated water molecules and the amino group of the 4-amino-3,5,6-trichloropicolinate anion are involved in extensive inter-species hydrogen-bonding interactions with carboxyl and water O-atoms as well as the pyridine N-atom. Among these association is a centrosymmetric cyclic tetra-water R4/4(8) ring , resulting in an overall three-dimensional structure.
Resumo:
In the structure of the title hydrated salt, NH4+·C8H5Cl2O3-·0.5H2O, where the anion derives from (3,5-dichlorophenoxy)acetic acid, the ammonium cation is involved in extensive N-H...O hydrogen bonding with both carboxylate and ether O-atom acceptors giving sheet structures lying parallel to (100). The water molecule of solvation lies on a crystallographic twofold rotation axis and is involved in intra-sheet O-H...Ocarboxylate hydrogen-bonding interactions. In the anion, the oxoacetate side chain assumes an antiperiplanar conformation with the defining C-O-C-C torsion angle = -171.33 (15)°.
Resumo:
The two-dimensional coordination polymeric structures of the hydrated potassium and rubidium salts of (3,5-dichlorophenoxy)acetic acid, (3,5-D) namely, poly[mu-aqua-bis[mu3-2-(3,5-dichlorophenoxy)acetato]potassium, [K2(C8H5Cl2O3)2 (H2O)]n (I) and poly[mu-aqua-bis[mu3-2-(3,5-dichlorophenoxy)acetato]dirubidium] [Rb2(C8H5Cl2O3)2 (H2O)]n (II), respectively have been determined and are described. The two compounds are isotypic and the polymer is based on centrosymmetric dinuclear bridged complex units. The irregular six-coordination about the metal centres comprises a bridging water molecule lying on a twofold rotation axis, the phenoxy O-atom donor and and a triple bridging carboxylate O-atom of the oxoacetate side chain of the 3,5-D ligand in a bidentate chelate mode, the second carboxy O-donor, also bridging. The K-O and Rb-O bond-length ranges are 2.7238(15)--2.9459(14) and 2.832(2)--3.050(2) \%A respectively and the K...K and Rb...Rb separations in the dinuclear unit are 4.0214(7) and 4.1289(6) \%A, respectively. Within the two-dimensional layers which lie parallel to (100), the coordinated water molecule forms an O---H...O hydrogen bond to the single bridging carboxylate O atom.
Resumo:
Crystal deposition is a very complex process ruled by numerous factors. A small but important proportion of cases of chondrocalcinosis are monogenic, and many of the genes involved have been identified. These genetic findings strongly point to control of the level of extracellular inorganic pyrophosphate as the primary mechanism for their association with either calcium pyrophosphate dihydrate or hydroxyapatite deposition. However, effects on extracellular inorganic pyrophosphate levels do not explain the mechanism of association in all of these monogenic diseases. Further, there are likely to be several as yet unidentified genes that are important in this common condition. This review highlights what genetic studies have demonstrated about the processes involved in these diverse but related disorders.
Resumo:
Endoplasmatic reticulum aminopeptidase 1 (ERAP1) is a multifunctional enzyme involved in trimming of peptides to an optimal length for presentation by major histocompatibility complex (MHC) class I molecules. Polymorphisms in ERAP1 have been associated with chronic inflammatory diseases, including ankylosing spondylitis (AS) and psoriasis, and subsequent in vitro enzyme studies suggest distinct catalytic properties of ERAP1 variants. To understand structure-activity relationships of this enzyme we determined crystal structures in open and closed states of human ERAP1, which provide the first snapshots along a catalytic path. ERAP1 is a zinc-metallopeptidase with typical H-E-X-X-H-(X)18-E zinc binding and G-A-M-E-N motifs characteristic for members of the gluzincin protease family. The structures reveal extensive domain movements, including an active site closure as well as three different open conformations, thus providing insights into the catalytic cycle. A K 528R mutant strongly associated with AS in GWAS studies shows significantly altered peptide processing characteristics, which are possibly related to impaired interdomain interactions.
Resumo:
In summary, although many factors are likely to be involved in regulating calcification and ossification processes, studies of the causation of articular chondrocalcinosis and disorders of spinal ossification, such as DISH and OPLL, implicate control over inorganic pyrophosphate levels as being one of the most important factors in their aetiopathogenesis. The findings of these studies may prove relevant to other rheumatic diseases in which ectopic ossification occurs, such as AS.
Resumo:
The anhydrous salts morpholinium (tetrahydro-2-H-1,4-oxazine) phenxyacetate, C4H10NO+ C8H7O3- (I), (4-fluorophenoxy)acetate, C4H10NO+ C8H6FO3- (II) and isomeric morpholinium (3,5-dichlorophenoxy)acetate (3,5-D) (III) and morpholinium (2,4-dichlorophenoxy)acetate (2,4-D), C4H10NO+ C8H5Cl2O3- (IV), have been determined and their hydrogen-bonded structures are described. In the crystals of (I), (III) and (IV), one of the the aminium H atoms is involved in a three-centre asymmetric cation-anion N-H...O,O' R2/1(4) hydrogen-bonding interaction with the two carboxyl O-atom acceptors of the anion. With the structure of (II), the primary N---H...O interaction is linear. In the structures of (I), (II) and (III), the second N-H...O(carboxyl) hydrogen bond generates one-dimensional chain structures extending in all cases along [100]. With (IV), the ion pairs are linked though inversion-related N-H...O hydrogen bonds [graph set R2/4(8)], giving a cyclic heterotetrameric structure.
Resumo:
In the anhydrous salt formed from the reaction of morpholine with cinnamic acid, C4H10NO+ C9H7O2-, the acid side chain in the trans-cinnamate anion is significantly rotated out of the benzene plane [C-C-C-C torsion angle = 158.54(17)deg. In the crystal, one of the the aminium H atoms is involved in a asymmetric three-centre cation-anion N-H...(O,O') R2/1(4) hydrogen-bonding interaction with the two carboxyl O-atom acceptors of the anion. The second aminium H atom forms an inter-species N-H...O(carboxyl) hydrogen bond, generating a one-dimensional chain structure extending along [100]. Chains are linked by C-H...O interactions forming a supramolecular layer parallel to (01-1).
Resumo:
We describe a surprising cooperative adsorption process observed by scanning tunneling microscopy (STM) at the liquid−solid interface. The process involves the association of a threefold hydrogen-bonding unit, trimesic acid (TMA), with straight-chain aliphatic alcohols of varying length (from C7 to C30), which coadsorb on highly oriented pyrolytic graphite (HOPG) to form linear patterns. In certain cases, the known TMA “flower pattern” can coexist temporarily with the linear TMA−alcohol patterns, but it eventually disappears. Time-lapsed STM imaging shows that the evolution of the flower pattern is a classical ripening phenomenon. The periodicity of the linear TMA−alcohol patterns can be modulated by choosing alcohols with appropriate chain lengths, and the precise structure of the patterns depends on the parity of the carbon count in the alkyl chain. Interactions that lead to this odd−even effect are analyzed in detail. The molecular components of the patterns are achiral, yet their association by hydrogen bonding leads to the formation of enantiomeric domains on the surface. The interrelation of these domains and the observation of superperiodic structures (moiré patterns) are rationalized by considering interactions with the underlying graphite surface and within the two-dimensional crystal of the adsorbed molecules. Comparison of the observed two-dimensional structures with the three-dimensional crystal structures of TMA−alcohol complexes determined by X-ray crystallography helps reveal the mechanism of molecular association in these two-component systems.
Resumo:
Modulation of material physical and chemical properties through selective surface engineering is currently one of the most active research fields, aimed at optimizing functional performance for applications. The activity of exposed crystal planes determines the catalytic, sensory, photocatalytic, and electrochemical behavior of a material. In the research on nanomagnets, it opens up new perspectives in the fields of nanoelectronics, spintronics, and quantum computation. Herein, we demonstrate controllable magnetic modulation of α-MnO 2 nanowires, which displayed surface ferromagnetism or antiferromagnetism, depending on the exposed plane. First-principles density functional theory calculations confirm that both Mn- and O-terminated α-MnO2(1 1 0) surfaces exhibit ferromagnetic ordering. The investigation of surface-controlled magnetic particles will lead to significant progress in our fundamental understanding of functional aspects of magnetism on the nanoscale, facilitating rational design of nanomagnets. Moreover, we approved that the facet engineering pave the way on designing semiconductors possessing unique properties for novel energy applications, owing to that the bandgap and the electronic transport of the semiconductor can be tailored via exposed surface modulations.