180 resultados para Woolen and worsted manufacture
Resumo:
There is increasing evidence of a weakened platform of consumer trust in mass produced food products. The resistance shown by consumers to the agro-industrial paradigm is evident in an emergent phase of reflexive consumerism, public reactions to an overly-concentrated retail sector and the rise of alternative food networks such as farmers' markets and organic box schemes. Supermarkets are responding strategically by aiming to manufacture new trust relations with consumers. This paper identifies three key strategies of trust manufacturing: (i) reputational enhancement though the institution of “behind the scenes,” business-to-business private standards; (ii) direct quality claims via private standard certification badges on food products, and ; (iii) discursive claimsmaking through symbolic representations of “authenticity” and “tradition.” Drawing upon the food governance literature and a “visual sociology” of supermarkets and supermarket produce, we highlight how trust is both commoditized and increasingly embedded into the marketing of mass-produced foods.
Resumo:
This article considers the decisions in Stephan v NRMA Insurance Limited [2001]QDC 002 and Bertha v Dragut [2001] QDC 003
Resumo:
The ISSCT Engineering Workshop 2008 in Brazil was well attended with 62 participants including 39 overseas visitors from 15 countries. The workshop addressed the theme Design, manufacturing and maintenance of sugar mill equipment. From the technical sessions, the following conclusions were drawn: • Several speakers articulated a shared vision of the future of the Brazilian sugar industry. This shared vision gives considerable confidence that the vision can become a reality. • There is an increased focus on energy products. As a result, the reduction of factory energy consumption in order to maximise the energy available for products is also a focus. • New equipment and products are being developed with reduced power consumption, lower capital and maintenance costs, and better performance. • Methods presented for reducing maintenance costs included the use of a maintenance management system, condition monitoring and material selection. The workshop was held in conjunction with Piracicaba’s annual SIMTEC exhibition for the sugar and alcohol industries that provides a forum for technical presentations and discussion, and showcases products and services from manufacturers and service providers. In return for holding the workshop in conjunction with SIMTEC, SIMTEC provided sponsorship for the workshop, including paying travel and accommodation costs for two invited speakers, and organisation for the workshop. The ISSCT and SIMTEC technical programs were arranged so that their technical sessions did not clash, and the ISSCT program was extended a day to provide an opportunity for ISSCT participants to attend the SIMTEC exhibition. Informal feedback from workshop participants suggested that the arrangement between ISSCT and SIMTEC worked well. Site visits to two manufacturing facilities and two sugar mills were arranged as part of the workshop.
Resumo:
Over the past 20 years the labour market, workforce and work organisation of most if not all industrialised countries have been significantly refashioned by the increased use of more flexible work arrangements, variously labelled as precarious employment or contingent work. There is now a substantial and growing body of international evidence that many of these arrangements are associated with a significant deterioration in occupational health and safety (OHS), using a range of measures such as injury rates, disease, hazard exposures and work-related stress. Moreover, there is an emerging body of evidence that these arrangements pose particular problems for conventional regulatory regimes. Recognition of these problems has aroused the concern of policy makers - especially in Europe, North America and Australia - and a number of responses have been adopted in terms of modifying legislation, producing new guidance material and codes of practice and revised enforcement practices. This article describes one such in itiative in Australia with regard to home-based clothing workers. The regulatory strategy developed in one Australian jurisdiction (and now being ‘exported’ into others) seeks to counter this process via contractual tracking mechanisms to follow the work, tie in liability and shift overarching legal responsibility to the top of the supply chain. The process also entails the integration of minimum standards relating to wages, hours and working conditions; OHS and access to workers’ compensation. While home-based clothing manufacture represents a very old type of ‘flexible’ work arrangement, it is one that regulators have found especially difficult to address. Further, the elaborate multi-tiered subcont racting and diffuse work locations found in this industry are also characteristic of newer forms of contingent work in other industries (such as some telework) and the regulatory challenges they pose (such as the tendency of elaborate supply chains to attenuate and fracture statutory responsibilities, at least in terms of the attitudes and behaviour of those involved).
Resumo:
Defectivity has been historically identified as a leading technical roadblock to the implementation of nanoimprint lithography for semiconductor high volume manufacturing. The lack of confidence in nanoimprint's ability to meet defect requirements originates in part from the industry's past experiences with 1 × lithography and the shortage in enduser generated defect data. SEMATECH has therefore initiated a defect assessment aimed at addressing these concerns. The goal is to determine whether nanoimprint, specifically Jet and Flash Imprint Lithography from Molecular Imprints, is capable of meeting semiconductor industry defect requirements. At this time, several cycles of learning have been completed in SEMATECH's defect assessment, with promising results. J-FIL process random defectivity of < 0.1 def/cm2 has been demonstrated using a 120nm half-pitch template, providing proof of concept that a low defect nanoimprint process is possible. Template defectivity has also improved significantly as shown by a pre-production grade template at 80nm pitch. Cycles of learning continue on feature sizes down to 22nm. © 2011 SPIE.
Resumo:
The synthesis of organoclays (OC) by intercalation of quaternary ammonium cation (QAC) into expanding clay minerals, notably montmorillonite (Mt), has attracted a great deal of attention during the past two decades. The OC have also found applications in the manufacture of clay polymer nanocomposites (CPN) and environmental remediation. Despite the wealth of information that exists on the formation and properties of OC, some problems remain to be resolved. The present contribution is an attempt at clarifying two outstanding issues, based on the literature and experimental data obtained by the authors over the past years. The first issue concerns the relationship between the cation exchange capacity (CEC) of the Mt and the basal spacing of the OC which, in turn, is dependent on the concentration and the nature of the added QAC. At a concentration less than 1 CEC, organo-Mt (OMt) formed using the QAC with a short alkyl chain length with nc < 16 (e.g., dodecyl trimethylammonium) gives basal spacings of 1.4–1.6 nm that are essentially independent of the CEC. However, for long-chain QAC with nc ≥ 16 (e.g., hexadecyl trimethylammonium), the basal spacing varies with the QAC concentration. For Mt with a CEC of 80–90 meq/100 g, the basal spacing of the OC increases gradually with the CEC and shows a sudden (stepwise) increase to 3.2–3.8 nm at a QAC concentration of 1.5 CEC and to 3.5–4.0 nm at a concentration of 2.0 CEC. The second issue pertains to the “locking” effect in QAC- and silane-modified pillared interlayered clays (PILC) and Mt. For silylated Mt, the “locking” effect results from the covalent bonding of silane to two adjacent layers within a single clay mineral particle. The same mechanism can operate in silane-grafted PILC but in this case, the “locking” effect may primarily be ascribed to the pillaring of adjacent basal surfaces by metal hydr(oxides).
Resumo:
In his book, The Emperor of All Maladies, Siddhartha Mukherjee writes a history of cancer — "It is a chronicle of an ancient disease — once a clandestine, 'whispered-about' illness — that has metamorphosed into a lethal shape-shifting entity imbued with such penetrating metaphorical, medical, scientific, and political potency that cancer is often described as the defining plague of our generation." Increasingly, an important theme in the history of cancer is the role of law, particularly in the field of intellectual property law. It is striking that a number of contemporary policy debates over intellectual property and public health have concerned cancer research, diagnosis, and treatment. In the area of access to essential medicines, there has been much debate over Novartis’ patent application in respect of Glivec, a treatment for leukaemia. India’s Supreme Court held that the Swiss company’s patent application violated a safeguard provision in India’s patent law designed to stop evergreening. In the field of tobacco control, the Australian Government introduced plain packaging for tobacco products in order to address the health burdens associated with the tobacco epidemic. This regime was successfully defended in the High Court of Australia. In the area of intellectual property and biotechnology, there have been significant disputes over the Utah biotechnology company Myriad Genetics and its patents in respect of genetic testing for BRCA1 and BRCA2, which are related to breast cancer and ovarian cancer. The Federal Court of Australia handed down a decision on the validity of Myriad Genetics’ patent in respect of genetic testing for BRCA1 in February 2013. The Supreme Court of the United States heard a challenge to the validity of Myriad Genetics’ patents in this area in April 2013, and handed down a judgment in July 2013. Such disputes have involved tensions between intellectual property rights, and public health. This article focuses upon one of these important test cases involving intellectual property, public health, and cancer research. In June 2010, Cancer Voices Australia and Yvonne D’Arcy brought an action in the Federal Court of Australia against the validity of a BRCA1 patent — held by Myriad Genetics Inc, the Centre de Recherche du Chul, the Cancer Institute of Japan and Genetic Technologies Limited. Yvonne D’Arcy — a Brisbane woman who has had treatment for breast cancer — maintained: "I believe that what they are doing is morally and ethically corrupt and that big companies should not control any parts of the human body." She observed: "For my daughter, I've had her have [sic] mammograms, etc, because of me but I would still like her to be able to have the test to see if the mutation gene is in there from me." The applicants made the following arguments: "Genes and the information represented by human gene sequences are products of nature universally present in each individual, and the information content of a human gene sequence is fixed. Genetic variations or mutations are products of nature. The isolation of the BRCA1 gene mutation from the human body constitutes no more than a medical or scientific discovery of a naturally occurring phenomenon and does not give rise to a patentable invention." The applicants also argued that "the alleged invention is not a patentable invention in that, so far as claimed in claims 1–3, it is not a manner of manufacture within the meaning of s 6 of the Statute of Monopolies". The applicants suggested that "the alleged invention is a mere discovery". Moreover, the applicants contended that "the alleged invention of each of claims 1-3 is not a patentable invention because they are claims for biological processes for the generation of human beings". The applicants, though, later dropped the argument that the patent claims related to biological processes for the generation of human beings. In February 2013, Nicholas J of the Federal Court of Australia considered the case brought by Cancer Voices Australia and Yvonne D’Arcy against Myriad Genetics. The judge presented the issues in the case, as follows: "The issue that arises in this case is of considerable importance. It relates to the patentability of genes, or gene sequences, and the practice of 'gene patenting'. Briefly stated, the issue to be decided is whether under the Patents Act 1990 (Cth) a valid patent may be granted for a claim that covers naturally occurring nucleic acid — either deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) — that has been 'isolated'". In this context, the word "isolated" implies that naturally occurring nucleic acid found in the cells of the human body, whether it be DNA or RNA, has been removed from the cellular environment in which it naturally exists and separated from other cellular components also found there. The genes found in the human body are made of nucleic acid. The particular gene with which the patent in suit is concerned (BRCA1) is a human breast and ovarian cancer disposing gene. Various mutations that may be present in this gene have been linked to various forms of cancer including breast cancer and ovarian cancer.' The judge held in this particular case that Myriad Genetics’ patent claims were a "manner of manufacture" under s 6 of the Statute of Monopolies and s 18(1)(a) of the Patents Act 1990 (Cth). The matter is currently under appeal in the Full Court of the Federal Court of Australia. This article interprets the dispute over Myriad Genetics in light of the scholarly work of Nobel Laureate Professor Joseph Stiglitz on inequality. Such work has significant explanatory power in the context of intellectual property and biotechnology. First, Stiglitz has contended that "societal inequality was a result not just of the laws of economics, but also of how we shape the economy — through politics, including through almost every aspect of our legal system". Stiglitz is concerned that "our intellectual property regime … contributes needlessly to the gravest form of inequality." He maintains: "The right to life should not be contingent on the ability to pay." Second, Stiglitz worries that "some of the most iniquitous aspects of inequality creation within our economic system are a result of 'rent-seeking': profits, and inequality, generated by manipulating social or political conditions to get a larger share of the economic pie, rather than increasing the size of that pie". He observes that "the most iniquitous aspect of this wealth appropriation arises when the wealth that goes to the top comes at the expense of the bottom." Third, Stiglitz comments: "When the legal regime governing intellectual property rights is designed poorly, it facilitates rent-seeking" and "the result is that there is actually less innovation and more inequality." He is concerned that intellectual property regimes "create monopoly rents that impede access to health both create inequality and hamper growth more generally." Finally, Stiglitz has recommended: "Government-financed research, foundations, and the prize system … are alternatives, with major advantages, and without the inequality-increasing disadvantages of the current intellectual property rights system.’" This article provides a critical analysis of the Australian litigation and debate surrounding Myriad Genetics’ patents in respect of genetic testing for BRCA1. First, it considers the ruling of Nicholas J in the Federal Court of Australia that Myriad Genetics’ patent was a manner of manufacture as it related to an artificially created state of affairs, and not mere products of nature. Second, it examines the policy debate over gene patents in Australia, and its relevance to the litigation involving Myriad Genetics. Third, it examines comparative law, and contrasts the ruling by Nicholas J in the Federal Court of Australia with developments in the United States, Canada, and the European Union. Fourth, this piece considers the reaction to the decision of Nicholas at first instance in Australia. Fifth, the article assesses the prospects of an appeal to the Full Federal Court of Australia over the Myriad Genetics’ patents. Finally, this article observes that, whatever happens in respect of litigation against Myriad Genetics, there remains controversy over Genetic Technologies Limited. The Melbourne firm has been aggressively licensing and enforcing its related patents on non-coding DNA and genomic mapping.
Resumo:
Sugar cane biomass is one of the most viable feedstocks for the production of renewable fuels and chemicals. Therefore, processing the whole of crop (WC) (i.e., stalk and trash, instead of stalk only) will increase the amount of available biomass for this purpose. However, effective clarification of juice expressed from WC for raw sugar manufacture is a major challenge because of the amounts and types of non-sucrose impurities (e.g., polysaccharides, inorganics, proteins, etc.) present. Calcium phosphate flocs are important during sugar cane juice clarification because they are responsible for the removal of impurities. Therefore, to gain a better understanding of the role of calcium phosphate flocs during the juice clarification process,the effects of impurities on the physicochemical properties of calcium phosphate flocs were examined using small-angle laser light scattering technique, attenuated total reflectance Fourier transformed infrared spectroscopy, and X-ray powder diffraction. Results on synthetic sugar juice solutions showed that the presence of SiO2 and Na+ ions affected floc size and floc structure. Starch and phosphate ions did not affect the floc structure; however, the former reduced the floc size, whereas the latter increased the floc size. The study revealed that high levels of Na+ ions would negatively affect the clarification process the most, as they would reduce the amount of suspended particles trapped by the flocs. A complementary study on prepared WC juice using cold and cold/intermediate liming techniques was conducted. The study demonstrated that, in comparison to the one-stage (i.e., conventional) clarification process, a two-stage clarification process using cold liming removed more polysaccharides (≤19%),proteins (≤82%), phosphorus (≤53%), and SiO2 (≤23%) in WC juice but increased Ca2+ (≤136%) and sulfur (≤200%)
Resumo:
As more raw sugar factories become involved in the manufacture of by-products and cogeneration, bagasse is becoming an increasingly valuable commodity. However, in most factories, most of the bagasse produced is used to generate steam in relatively old and inefficient boilers. Efficient bagasse fired boilers are a high capital cost item and the cost of supplying the steam required to run a sugar factory by other means is prohibitive. For many factories a more realistic way to reduce bagasse consumption is to increase the efficiency of existing boilers. The Farleigh No. 3 boiler is a relatively old low efficiency boiler. Like many in the industry, the performance of this boiler has been adversely affected by uneven gas and air flow distributions and air heater leaks. The combustion performance and efficiency of this boiler have been significantly improved by making the gas and air flow distributions through the boiler more uniform and repairing the air heater. The estimated bagasse savings easily justify the cost of the boiler improvements.
Packed bed bioreactor for the isolation and expansion of placental-derived Mesenchymal Stromal Cells
Resumo:
Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs.
Resumo:
Treatment of joint diseases such as osteoarthritis is difficult and requires extensive developments for adequate solutions to emerge. Continued innovation in projects explored in this thesis may be beneficial to understanding the requirements of the joint environment. This may then lead to constructs that perform desirably from both mechanical and biological standpoints, resulting in complete, tissue-engineered osteochondral solutions. This thesis investigated specific scaffold designs for bone and osteochondral tissue engineering, as well as the formation of complex criteria on which cartilage hydrogel scaffolds may be assessed. The combination of hydrogels and ceramics were found to maintain chondrogenesis, while the concentration of photoinitiators in photocrosslinkable hydrogel systems may be optimised to maximise mechanical properties and cell viability. Finally, viscoelasticity of hydrogel blends was assessed using oscillatory motion, demonstrating the property is tailorable.
Resumo:
After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a low−cost high−performance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new low−cost environmentally−friendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentally−conscious focus of this project. Terpinen−4−ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and anti−inflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous by−products. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physico−chemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of well−accepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7° for the 10 W samples to 76.3° for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 μN load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy – from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from current−voltage characteristics of Al−polyterpenol−Al devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 10⁸−10⁹ _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 × 10⁻⁸ S/cm to 1.20 × 10⁻⁶ S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 ºC to 205 ºC for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 °C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to –3 V, enhancing the effective mobility from 0.012 to 0.021 cm²/Vs, and improving the switching property of the device from 10⁷ to 10⁴. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen−4−ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be non−toxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP−1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP−1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.
Resumo:
Polydimethylsiloxane (PDMS) is the most commonly used material in the manufacture of customized cell culture devices. While there is concern that uncured PDMS oligomers may leach into culture medium and/or hydrophobic molecules may be absorbed into PDMS structures, there is no consensus on how or if PDMS influences cell behaviour. We observed that human umbilical cord blood (CB)-derived CD34+ cells expanded in standard culture medium on PDMS exhibit reduced CD38 surface expression, relative to cells cultured on tissue culture polystyrene (TCP). All-trans retinoic acid (ATRA) induces CD38 expression, and we reasoned that this hydrophobic molecule might be absorbed by PDMS. Through a series of experiments we demonstrated that ATRA-mediated CD38 expression was attenuated when cultures were maintained on PDMS. Medium pre-incubated on PDMS for extended durations resulted in a time-dependant reduction of ATRA in the medium and increasingly attenuated CD38 expression. This indicated a time-dependent absorption of ATRA into the PDMS. To better understand how PDMS might generally influence cell behaviour, Ingenuity Pathway Analysis (IPA) was used to identify potential upstream regulators. This analysis was performed for differentially expressed genes in primary cells including CD34+ haematopoietic progenitor cells, mesenchymal stromal cells (MSC), and keratinocytes, and cell lines including prostate cancer epithelial cells (LNCaP), breast cancer epithelial cells (MCF-7), and myeloid leukaemia cells (KG1a). IPA predicted that the most likely common upstream regulator of perturbed pathways was ATRA. We demonstrate here that ATRA is absorbed by PDMS in a time-dependent manner and results in the concomitant reduced expression of CD38 on the cell surface of CB-derived CD34+ cells.