620 resultados para Web Mining
Resumo:
This thesis is a study for automatic discovery of text features for describing user information needs. It presents an innovative data-mining approach that discovers useful knowledge from both relevance and non-relevance feedback information. The proposed approach can largely reduce noises in discovered patterns and significantly improve the performance of text mining systems. This study provides a promising method for the study of Data Mining and Web Intelligence.
Resumo:
Over the last decade, the majority of existing search techniques is either keyword- based or category-based, resulting in unsatisfactory effectiveness. Meanwhile, studies have illustrated that more than 80% of users preferred personalized search results. As a result, many studies paid a great deal of efforts (referred to as col- laborative filtering) investigating on personalized notions for enhancing retrieval performance. One of the fundamental yet most challenging steps is to capture precise user information needs. Most Web users are inexperienced or lack the capability to express their needs properly, whereas the existent retrieval systems are highly sensitive to vocabulary. Researchers have increasingly proposed the utilization of ontology-based tech- niques to improve current mining approaches. The related techniques are not only able to refine search intentions among specific generic domains, but also to access new knowledge by tracking semantic relations. In recent years, some researchers have attempted to build ontological user profiles according to discovered user background knowledge. The knowledge is considered to be both global and lo- cal analyses, which aim to produce tailored ontologies by a group of concepts. However, a key problem here that has not been addressed is: how to accurately match diverse local information to universal global knowledge. This research conducts a theoretical study on the use of personalized ontolo- gies to enhance text mining performance. The objective is to understand user information needs by a \bag-of-concepts" rather than \words". The concepts are gathered from a general world knowledge base named the Library of Congress Subject Headings. To return desirable search results, a novel ontology-based mining approach is introduced to discover accurate search intentions and learn personalized ontologies as user profiles. The approach can not only pinpoint users' individual intentions in a rough hierarchical structure, but can also in- terpret their needs by a set of acknowledged concepts. Along with global and local analyses, another solid concept matching approach is carried out to address about the mismatch between local information and world knowledge. Relevance features produced by the Relevance Feature Discovery model, are determined as representatives of local information. These features have been proven as the best alternative for user queries to avoid ambiguity and consistently outperform the features extracted by other filtering models. The two attempt-to-proposed ap- proaches are both evaluated by a scientific evaluation with the standard Reuters Corpus Volume 1 testing set. A comprehensive comparison is made with a num- ber of the state-of-the art baseline models, including TF-IDF, Rocchio, Okapi BM25, the deploying Pattern Taxonomy Model, and an ontology-based model. The gathered results indicate that the top precision can be improved remarkably with the proposed ontology mining approach, where the matching approach is successful and achieves significant improvements in most information filtering measurements. This research contributes to the fields of ontological filtering, user profiling, and knowledge representation. The related outputs are critical when systems are expected to return proper mining results and provide personalized services. The scientific findings have the potential to facilitate the design of advanced preference mining models, where impact on people's daily lives.
Resumo:
A people-to-people matching system (or a match-making system) refers to a system in which users join with the objective of meeting other users with the common need. Some real-world examples of these systems are employer-employee (in job search networks), mentor-student (in university social networks), consume-to-consumer (in marketplaces) and male-female (in an online dating network). The network underlying in these systems consists of two groups of users, and the relationships between users need to be captured for developing an efficient match-making system. Most of the existing studies utilize information either about each of the users in isolation or their interaction separately, and develop recommender systems using the one form of information only. It is imperative to understand the linkages among the users in the network and use them in developing a match-making system. This study utilizes several social network analysis methods such as graph theory, small world phenomenon, centrality analysis, density analysis to gain insight into the entities and their relationships present in this network. This paper also proposes a new type of graph called “attributed bipartite graph”. By using these analyses and the proposed type of graph, an efficient hybrid recommender system is developed which generates recommendation for new users as well as shows improvement in accuracy over the baseline methods.
Resumo:
In a pilot application based on web search engine calledWeb-based Relation Completion (WebRC), we propose to join two columns of entities linked by a predefined relation by mining knowledge from the web through a web search engine. To achieve this, a novel retrieval task Relation Query Expansion (RelQE) is modelled: given an entity (query), the task is to retrieve documents containing entities in predefined relation to the given one. Solving this problem entails expanding the query before submitting it to a web search engine to ensure that mostly documents containing the linked entity are returned in the top K search results. In this paper, we propose a novel Learning-based Relevance Feedback (LRF) approach to solve this retrieval task. Expansion terms are learned from training pairs of entities linked by the predefined relation and applied to new entity-queries to find entities linked by the same relation. After describing the approach, we present experimental results on real-world web data collections, which show that the LRF approach always improves the precision of top-ranked search results to up to 8.6 times the baseline. Using LRF, WebRC also shows performances way above the baseline.
Resumo:
This paper presents a single pass algorithm for mining discriminative Itemsets in data streams using a novel data structure and the tilted-time window model. Discriminative Itemsets are defined as Itemsets that are frequent in one data stream and their frequency in that stream is much higher than the rest of the streams in the dataset. In order to deal with the data structure size, we propose a pruning process that results in the compact tree structure containing discriminative Itemsets. Empirical analysis shows the sound time and space complexity of the proposed method.
Resumo:
The proliferation of the web presents an unsolved problem of automatically analyzing billions of pages of natural language. We introduce a scalable algorithm that clusters hundreds of millions of web pages into hundreds of thousands of clusters. It does this on a single mid-range machine using efficient algorithms and compressed document representations. It is applied to two web-scale crawls covering tens of terabytes. ClueWeb09 and ClueWeb12 contain 500 and 733 million web pages and were clustered into 500,000 to 700,000 clusters. To the best of our knowledge, such fine grained clustering has not been previously demonstrated. Previous approaches clustered a sample that limits the maximum number of discoverable clusters. The proposed EM-tree algorithm uses the entire collection in clustering and produces several orders of magnitude more clusters than the existing algorithms. Fine grained clustering is necessary for meaningful clustering in massive collections where the number of distinct topics grows linearly with collection size. These fine-grained clusters show an improved cluster quality when assessed with two novel evaluations using ad hoc search relevance judgments and spam classifications for external validation. These evaluations solve the problem of assessing the quality of clusters where categorical labeling is unavailable and unfeasible.
Resumo:
Multi-document summarization addressing the problem of information overload has been widely utilized in the various real-world applications. Most of existing approaches adopt term-based representation for documents which limit the performance of multi-document summarization systems. In this paper, we proposed a novel pattern-based topic model (PBTMSum) for the task of the multi-document summarization. PBTMSum combining pattern mining techniques with LDA topic modelling could generate discriminative and semantic rich representations for topics and documents so that the most representative and non-redundant sentences can be selected to form a succinct and informative summary. Extensive experiments are conducted on the data of document understanding conference (DUC) 2007. The results prove the effectiveness and efficiency of our proposed approach.