386 resultados para Water-storage
Resumo:
This thesis focuses on the volatile and hygroscopic properties of mixed aerosol species. In particular, the influence organic species of varying solubility have upon seed aerosols. Aerosol studies were conducted at the Paul Scherrer Institut Laboratory for Atmospheric Chemistry (PSI-LAC, Villigen, Switzerland) and at the Queensland University of Technology International Laboratory for Air Quality and Health (QUT-ILAQH, Brisbane, Australia). The primary measurement tool employed in this program was the Volatilisation and Hygroscopicity Tandem Differential Mobility Analyser (VHTDMA - Johnson et al. 2004). This system was initially developed at QUT within the ILAQH and was completely re-developed as part of this project (see Section 1.4 for a description of this process). The new VHTDMA was deployed to the PSI-LAC where an analysis of the volatile and hygroscopic properties of ammonium sulphate seeds coated with organic species formed from the photo-oxidation of á-pinene was conducted. This investigation was driven by a desire to understand the influence of atmospherically prevalent organics upon water uptake by material with cloud forming capabilities. Of particular note from this campaign were observed influences of partially soluble organic coatings upon inorganic ammonium sulphate seeds above and below their deliquescence relative humidity (DRH). Above the DRH of the seed increasing the volume fraction of the organic component was shown to reduce the water uptake of the mixed particle. Below the DRH the organic was shown to activate the water uptake of the seed. This was the first time this effect had been observed for á-pinene derived SOA. In contrast with the simulated aerosols generated at the PSI-LAC a case study of the volatile and hygroscopic properties of diesel emissions was undertaken. During this stage of the project ternary nucleation was shown, for the first time, to be one of the processes involved in formation of diesel particulate matter. Furthermore, these particles were shown to be coated with a volatile hydrophobic material which prevented the water uptake of the highly hygroscopic material below. This result was a first and indicated that previous studies into the hygroscopicity of diesel emission had erroneously reported the particles to be hydrophobic. Both of these results contradict the previously upheld Zdanovksii-Stokes-Robinson (ZSR) additive rule for water uptake by mixed species. This is an important contribution as it adds to the weight of evidence that limits the validity of this rule.
Resumo:
With the rising levels of CO2 in the atmosphere, low-emission technologies with carbon dioxide capture and storage (CCS) provide one option for transforming the global energy infrastructure into a more environmentally, climate sustainable system. However, like many technology innovations, there is a social risk to the acceptance of CCS. This article presents the findings of an engagement process using facilitated workshops conducted in two communities in rural Queensland, Australia, where a demonstration project for IGCC with CCS has been announced. The findings demonstrate that workshop participants were concerned about climate change and wanted leadership from government and industry to address the issue. After the workshops, participants reported increased knowledge and more positive attitudes towards CCS, expressing support for the demonstration project to continue in their local area. The process developed is one that could be utilized around the world to successfully engage communities on the low carbon emission technology options.
Resumo:
Water is a current major global, national and local issue. Historic drought and unprecedented restriction levels are now substantially influencing almost all Australia’s major cities. Residential design and adoption of appropriate technologies plays a key role in urban water efficiency. This project, the first of the CRC-CI Sustainable subdivisions program with a focus on water, explores the existing technologies available for sustainable suburbs.
Resumo:
Maintenance of bridge structures is a major issue for the Queensland Department of Main Roads. In the previous phase of this CRC project an initial approach was made towards the development of a program for lifetime prediction of metallic bridge components. This involved the analysis of five representative bridge structures with respect to salt deposition (a major contributor to metallic corrosion) to determine common elements to be used as “cases” - those defined for buildings are not applicable. The five bridges analysed included the Gladstone Port Access Road Overpass, Stewart Road Overpass, South Johnstone River Bridge, Johnson Creek Bridge and the Ward River Bridge.