150 resultados para Voltage ripples
Resumo:
stract This paper proposes a hybrid discontinuous control methodology for a voltage source converter (VSC), which is used in an uninterrupted power supply (UPS) application. The UPS controls the voltage at the point of common coupling (PCC). An LC filter is connected at the output of the VSC to bypass switching harmonics. With the help of both filter inductor current and filter capacitor voltage control, the voltage across the filter capacitor is controlled. Based on the voltage error, the control is switched between current and voltage control modes. In this scheme, an extra diode state is used that makes the VSC output current discontinuous. This diode state reduces the switching losses. The UPS controls the active power it supplies to a three-phase, four-wire distribution system. This gives a full flexibility to the grid to buy power from the UPS system depending on its cost and load requirement at any given time. The scheme is validated through simulation using PSCAD.
Resumo:
The concept of an interline voltage controller (IVOLCON) to improve the power quality in a power distribution system is discussed. An IVOLCON consists of two shunt voltage source converters (VSCs) that are joined through a common dc bus. The VSCs are connected to two different feeders. The main aim of the IVOLCON is to control the PCC (Point of Common Coupling) bus voltages of the two feeders to pre-specified magnitudes. The phase angles of the PCC bus voltages are obtained such that the voltage across the common dc link remains constant. The structure, control and capability of the IVOLCON are described. The efficacy of the proposed configuration has been verified through simulation studies using PSCAD/EMTDC for voltage sags and feeder outage
Resumo:
The paper discusses the operating principles and control characteristics of a dynamic voltage restorer (DVR) that protects sensitive but unbalanced and/or distorted loads. The main aim of the DVR is to regulate the voltage at the load terminal irrespective of sag/swell, distortion, or unbalance in the supply voltage. In this paper, the DVR is operated in such a fashion that it does not supply or absorb any active power during the steady-state operation. Hence, a DC capacitor rather than a DC source can supply the voltage source inverter realizing the DVR. The proposed DVR operation is verified through extensive digital computer simulation studies.
Resumo:
Voltage Unbalance (VU) is a power quality issue arising within the low voltage residential distribution networks due to the random location and rating of single-phase rooftop photovoltaic cells (PVs). In this paper, an analysis has been carried out to investigate how PV installations, their random location and power generation capacity can cause an increase in VU. Several efficient practical methods are discussed for VU reduction. Based on this analysis, it has been shown that the installation of a DSTATCOM can reduce VU. In this paper, the best possible location for DSTATCOM and its efficient control method to reduce VU will be presented. The results are verified through PSCAD/EMTDC and Monte Carlo simulations.
Resumo:
Improving efficiency and flexibility in pulsed power supply technologies are the most substantial concerns of pulsed power systems specifically for plasma generation. Recently, the improvement of pulsed power supply becomes of greater concern due to extension of pulsed power applications to environmental and industrial areas. A current source based topology is proposed in this paper which gives the possibility of power flow control. The main contribution in this configuration is utilization of low-medium voltage semiconductor switches for high voltage generation. A number of switch-diode-capacitor units are designated at the output of topology to exchange the current source energy into voltage form and generate a pulsed power with sufficient voltage magnitude and stress. Simulations have been carried out in Matlab/SIMULINK platform to verify the capability of this topology in performing desired duties. Being efficient and flexible are the main advantages of this topology.
Resumo:
This paper presents a high voltage pulsed power system based on low voltage switch-capacitor units connected to a current source for several applications such as plasma systems. A modified positive buck-boost converter topology is used to utilize the current source concept and a series of low voltage switch-capacitor units is connected to the current source in order to provide high voltage with high voltage stress (dv/dt) as demanded by loads. This pulsed power converter is flexible in terms of energy control, in that the stored energy in the current source can be adjusted by changing the current magnitude to significantly improve the efficiency of various systems with different requirements. Output voltage magnitude and stress (dv/dt) can be controlled by a proper selection of components and control algorithm to turn on and off switching devices.
Resumo:
This article deals with the non-linear oscillations assessment of a distribution static comensator ooperating in voltage control mode using the bifurcation theory. A mathematical model of the distribution static compensator in the voltage control mode to carry out the bifurcation analysis is derived. The stabiity regions in the Thevein equivalent plane are computed. In addition, the stability regions in the control gains space, as well as the contour lines for different Floquet multipliers are computed. The AC and DC capacitor impacts on the stability are analyzed through the bifurcation theory. The observations are verified through simulaation studies. The computation of the stability region allows the assessment of the stable operating zones for a power system that includes a distribution static compensator operating in the voltage mode.
Resumo:
Along with their essential role in electricity transmission and distribution, some powerlines also generate large concentrations of corona ions. This study aimed at comprehensive investigation of corona ions, vertical dc e-field, ambient aerosol particle charge and particle number concentration levels in the proximity of some high/sub-transmission voltage powerlines. The influence of meteorology on the instantaneous value of these parameters, and the possible existence of links or associations between the parameters measured were also statistically investigated. The presence of positive and negative polarities of corona ions was associated with variation in the mean vertical dc e-field, ambient ion and particle charge concentration level. Though these variations increased with wind speed, their values also decreased with distance from the powerlines. Predominately positive polarities of ions were recorded up to a distance of 150 m (with the maximum values recorded 50 m downwind of the powerlines). At 200 m from the source, negative ions predominated. Particle number concentration levels however remained relatively constant (103 particle cm-3) irrespective of the sampling site and distance from the powerlines. Meteorological factors of temperature, humidity and wind direction showed no influence on the electrical parameters measured. The study also discovered that e-field measurements were not necessarily a true representation of the ground-level ambient ion/particle charge concentrations.
Resumo:
In this paper, two different high bandwidth converter control strategies are discussed. One of the strategies is for voltage control and the other is for current control. The converter, in each of the cases, is equipped with an output passive filter. For the voltage controller, the converter is equipped with an LC filter, while an output has an LCL filter for current controller. The important aspect that has been discussed the paper is to avoid computation of unnecessary references using high-pass filters in the feedback loop. The stability of the overall system, including the high-pass filters, has been analyzed. The choice of filter parameters is crucial for achieving desirable system performance. In this paper, the bandwidth of achievable performance is presented through frequency (Bode) plot of the system gains. It has been illustrated that the proposed controllers are capable of tracking fundamental frequency components along with low-order harmonic components. Extensive simulation results are presented to validate the control concepts presented in the paper.
Resumo:
Common mode voltage generated by a power converter in combination with parasitic capacitive couplings is a potential source of shaft voltage in an AC motor drive system. In this paper, a three-phase motor drive system supplied with a single-phase AC-DC diode rectifier is investigated in order to reduce shaft voltage in a three-phase AC motor drive system. In this topology, the common mode voltage generated by the inverter is influenced by the AC-DC diode rectifier because the placement of the neutral point is changing in different rectifier circuit states. A pulse width modulation technique is presented by a proper placement of the zero vectors to reduce the common mode voltage level, which leads to a cost effective shaft voltage reduction technique without load current distortion, while keeping the switching frequency constant. Analysis and simulations have been presented to investigate the proposed method.
Resumo:
In this paper, the performance of voltage-source converter-based shunt and series compensators used for load voltage control in electrical power distribution systems has been analyzed and compared, when a nonlinear load is connected across the load bus. The comparison has been made based on the closed-loop frequency resopnse characteristics of the compensated distribution system. A distribution static compensator (DSTATCOM) as a shunt device and a dynamic voltage restorer (DVR) as a series device are considered in the voltage-control mode for the comparison. The power-quality problems which these compensator address include voltage sags/swells, load voltage harmonic distortions, and unbalancing. The effect of various system parameters on the control performance of the compensator can be studied using the proposed analysis. In particular, the performance of the two compensators are compared with the strong ac supply (stiff source) and weak ac-supply (non-still source) distribution system. The experimental verification of the analytical results derived has been obtained using a laboratory model of the single-phase DSTATCOM and DVR. A generalized converter topology using a cascaded multilevel inverter has been proposed for the medium-voltage distribution system. Simulation studies have been performed in the PSCAD/EMTDC software to verify the results in the three-phase system.
Resumo:
Optimal scheduling of voltage regulators (VRs), fixed and switched capacitors and voltage on customer side of transformer (VCT) along with the optimal allocaton of VRs and capacitors are performed using a hybrid optimisation method based on discrete particle swarm optimisation and genetic algorithm. Direct optimisation of the tap position is not appropriate since in general the high voltage (HV) side voltage is not known. Therefore, the tap setting can be determined give the optimal VCT once the HV side voltage is known. The objective function is composed of the distribution line loss cost, the peak power loss cost and capacitors' and VRs' capital, operation and maintenance costs. The constraints are limits on bus voltage and feeder current along with VR taps. The bus voltage should be maintained within the standard level and the feeder current should not exceed the feeder-rated current. The taps are to adjust the output voltage of VRs between 90 and 110% of their input voltages. For validation of the proposed method, the 18-bus IEEE system is used. The results are compared with prior publications to illustrate the benefit of the employed technique. The results also show that the lowest cost planning for voltage profile will be achieved if a combination of capacitors, VRs and VCTs is considered.