171 resultados para Vehicle Power Plants.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to significant increase in vehicular accident and traffic congestions, vehicle to vehicle (V2V) communication based on the intelligent transport system (ITS) was introduced. However, to carry out efficient design and implementation of a reliable vehicular communication systems,a deep knowledge of the propagation channel characteristics in different environments is crucial, in particular the Doppler and pathloss parameters. Therefore, this paper presents an empirical V2V channel characterization and measurement performed under realistic urban, suburban and highway driving conditions in Brisbane, Australia. Based on Lin Cheng statistical Doppler Model (LCDM), values for the RMS Doppler spread and coherence time due to time selective nature of V2V channels were presented. Also, based on Log-distance power law model, values for the mean pathloss exponent and the standard deviation of shadowing were reported for urban, suburban and highway environments. The V2V channel parameters can be useful to system designers for the purpose of evaluating, simulating and developing new protocols and systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a pathloss characterization for vehicle-to-vehicle (V2V) communications based on empirical data collected from extensive measurement campaign performed under line-of-sight (LOS), non-line-of-sight (NLOS) and varying traffic densities. The experiment was conducted in three different V2V propagation environments: highway, suburban and urban at 5.8GHz. We developed pathloss models for each of the three different V2V environments considered. Based on a log-distance power law model, the values for the pathloss exponent and the standard deviation of shadowing were reported. The average pathloss exponent ranges from 1.77 for highway, 1.68 for the urban to 1.53 for the suburban environment. The reported results can contribute to vehicular network (VANET) simulators and can be used by system designers to develop, evaluate and validate new protocols and system designs under realistic propagation conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

100 year old gasoline engine technology vehicles have now become one of the major contributors of greenhouse gases. Plug-in Electric Vehicles (PEVs) have been proposed to achieve environmental friendly transportation. Even though the PEV usage is currently increasing, a technology breakthrough would be required to overcome battery related drawbacks. Although battery technology is evolving, drawbacks inherited with batteries such as; cost, size, weight, slower charging characteristic and low energy density would still be dominating constrains for development of EVs. Furthermore, PEVs have not been accepted as preferred choice by many consumers due to charging related issues. To address battery related limitations, the concept of dynamic Wireless Power Transfer (WPT) enabled EVs have been proposed in which EV is being charged while it is in motion. WPT enabled infrastructure has to be employed to achieve dynamic EV charging concept. The weight of the battery pack can be reduced as the required energy storage is lower if the vehicle can be powered wirelessly while driving. Stationary WPT charging where EV is charged wirelessly when it is stopped, is simpler than dynamic WPT in terms of design complexity. However, stationary WPT does not increase vehicle range compared to wired-PEVs. State-of-art WPT technology for future transportation is discussed in this chapter. Analysis of the WPT system and its performance indices are introduced. Modelling the WPT system using different methods such as equivalent circuit theory, two port network theory and coupled mode theory is described illustrating their own merits in Sect. 2.3. Both stationary and dynamic WPT for EV applications are illustrated in Sect. 2.4. Design challenges and optimization directions are analysed in Sect. 2.5. Adaptive tuning techniques such as adaptive impedance matching and frequency tuning are also discussed. A case study for optimizing resonator design is presented in Sect. 2.6. Achievements by the research community is introduced highlighting directions for future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unidirectional inductive power transfer (UIPT) systems allow loads to consume power while bidirectional IPT (BIPT) systems are more suitable for loads requiring two way power flow such as vehicle to grid (V2G) applications with electric vehicles (EVs). Many attempts have been made to improve the performance of BIPT systems. In a typical BIPT system, the output power is control using the pickup converter phase shift angle (PSA) while the primary converter regulates the input current. This paper proposes an optimized phase shift modulation strategy to minimize the coil losses of a series – series (SS) compensated BIPT system. In addition, a comprehensive study on the impact of power converters on the overall efficiency of the system is also presented. A closed loop controller is proposed to optimize the overall efficiency of the BIPT system. Theoretical results are presented in comparison to both simulations and measurements of a 0.5 kW prototype to show the benefits of the proposed concept. Results convincingly demonstrate the applicability of the proposed system offering high efficiency over a wide range of output power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a lightweight, modular and energy efficient robotic vehicle platform designed for broadacre agriculture - the Small Robotic Farm Vehicle (SRFV). The current trend in farming is towards increasingly large machines that optimise the individual farmer’s productivity. Instead, the SRFV is designed to promote the sustainable intensification of agriculture by allowing farmers to concentrate on more important farm management tasks. The robot has been designed with a user-centred approach which focuses the outcomes of the project on the needs of the key project stakeholders. In this way user and environmental considerations for broadacre farming have informed the vehicle platform configuration, locomotion, power requirements and chassis construction. The resultant design is a lightweight, modular four-wheeled differential steer vehicle incorporating custom twin in-hub electric drives with emergency brakes. The vehicle is designed for a balance between low soil impact, stability, energy efficiency and traction. The paper includes modelling of the robot’s dynamics during an emergency brake in order to determine the potential for tipping. The vehicle is powered by a selection of energy sources including rechargeable lithium batteries and petrol-electric generators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is impracticable to upgrade the 18,900 Australian passive crossings as such crossings are often located in remote areas, where power is lacking and with low road and rail traffic. The rail industry is interested in developing innovative in-vehicle technology interventions to warn motorists of approaching trains directly in their vehicles. The objective of this study was therefore to evaluate the benefits of the introduction of such technology. We evaluated the changes in driver performance once the technology is enabled and functioning correctly, as well as the effects of an unsafe failure of the technology? We conducted a driving simulator study where participants (N=15) were familiarised with an in-vehicle audio warning for an extended period. After being familiarised with the system, the technology started failing, and we tested the reaction of drivers with a train approaching. This study has shown that with the traditional passive crossings with RX2 signage, the majority of drivers complied (70%) and looked for trains on both sides of the rail track. With the introduction of the in-vehicle audio message, drivers did not approach crossings faster, did not reduce their safety margins and did not reduce their gaze towards the rail tracks. However participants’ compliance at the stop sign decreased by 16.5% with the technology installed in the vehicle. The effect of the failure of the in-vehicle audio warning technology showed that most participants did not experience difficulties in detecting the approaching train even though they did not receive any warning message. This showed that participants were still actively looking for trains with the system in their vehicle. However, two participants did not stop and one decided to beat the train when they did not receive the audio message, suggesting potential human factors issues to be considered with such technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Overhead high-voltage power lines are known sources of corona ions. These ions rapidly attach to aerosols to form charged particles in the environment. Although the effect of ions and charged particles on human health is largely unknown, much attention has focused on the increasing exposure as a result of the expanding power network in urban residential areas. However, it is not widely known that a large number of charged particles in urban environments originate from motor vehicle emissions. In this study, for the first time, we compare the concentrations of charged nanoparticles near busy roads and overhead power lines. We show that large concentrations of both positive and negative charged nanoparticles are present near busy roadways and that these concentrations commonly exceed those under high-voltage power lines. We estimate that the concentration of charged nanoparticles found near two freeways carrying around 120 vehicles per minute exceeded the corresponding maximum concentrations under two corona-emitting overhead power lines by as much as a factor of 5. The difference was most pronounced when a significant fraction of traffic consisted of heavy-duty diesel vehicles which typically have high particle and charge emission rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensor networks for environmental monitoring present enormous benefits to the community and society as a whole. Currently there is a need for low cost, compact, solar powered sensors suitable for deployment in rural areas. The purpose of this research is to develop both a ground based wireless sensor network and data collection using unmanned aerial vehicles. The ground based sensor system is capable of measuring environmental data such as temperature or air quality using cost effective low power sensors. The sensor will be configured such that its data is stored on an ATMega16 microcontroller which will have the capability of communicating with a UAV flying overhead using UAV communication protocols. The data is then either sent to the ground in real time or stored on the UAV using a microcontroller until it lands or is close enough to enable the transmission of data to the ground station.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite ongoing controversies regarding possible directions for the nuclear plants program throughout Japan since the Fukushima disaster, little has been researched about people's belief structure about future society and what may affect their attitudes toward different policy options. Beyond policy debates, the present study focused on how people see a future society according to the assumptions of different policy options. A total of 125 students at Japanese universities were asked to compare a future society with society today in which one of alternative policies was adopted (i.e., shutdown or expansion of nuclear reactors) in terms of characteristics of individuals and society in general. While perceived dangerousness of nuclear power predicted attitudes and behavioural intentions to make personal sacrifices for nuclear power policies, beliefs about the social consequences of the policies, especially on economic development and dysfunction, appeared to play stronger roles in predicting those measures. The importance of sociological dimensions in understanding how people perceive the future of society regarding alternative nuclear power policies, and the subtle discrepancies between attitudes and behavioural intentions, are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microclimate and host plant architecture significantly influence the abundance and behavior of insects. However, most research in this field has focused at the invertebrate assemblage level, with few studies at the single-species level. Using wild Solanum mauritianum plants, we evaluated the influence of plant structure (number of leaves and branches and height of plant) and microclimate (temperature, relative humidity, and light intensity) on the abundance and behavior of a single insect species, the monophagous tephritid fly Bactrocera cacuminata (Hering). Abundance and oviposition behavior were signficantly influenced by the host structure (density of foliage) and associated microclimate. Resting behavior of both sexes was influenced positively by foliage density, while temperature positively influenced the numbers of resting females. The number of ovipositing females was positively influenced by temperature and negatively by relative humidity. Feeding behavior was rare on the host plant, as was mating. The relatively low explanatory power of the measured variables suggests that, in addition to host plant architecture and associated microclimate, other cues (e.g., olfactory or visual) could affect visitation and use of the larval host plant by adult fruit flies. For 12 plants observed at dusk (the time of fly mating), mating pairs were observed on only one tree. Principal component analyses of the plant and microclimate factors associated with these plants revealed that the plant on which mating was observed had specific characteristics (intermediate light intensity, greater height, and greater quantity of fruit) that may have influenced its selection as a mating site.

Relevância:

20.00% 20.00%

Publicador: