288 resultados para Traffic signals
Resumo:
Purpose: To evaluate the on-road driving performance of persons with homonymous hemianopia or quadrantanopia in comparison to age-matched controls with normal visual fields. Methods: Participants were 22 hemianopes and eight quadrantanopes (mean age 53 years) and 30 persons with normal visual fields (mean age 52 years) and were either current drivers or aiming to resume driving. All participants completed a battery of tests of vision (ETDRS visual acuity, Pelli-Robson letter contrast sensitivity, Humphrey visual fields), cognitive tests (trials A and B, Mini Mental State Examination, Digit Symbol Substitution) and an on-road driving assessment. Driving performance was assessed in a dual-brake vehicle with safety monitored by a certified driving rehabilitation specialist. Backseat evaluators masked to the clinical characteristics of participants independently rated driving performance along a 22.7 kilometre route involving urban and interstate driving. Results: Seventy-three per cent of the hemianopes, 88 per cent of quadrantanopes and all of the drivers with normal fields received safe driving ratings. Those hemianopic and quadrantanopic drivers rated as unsafe tended to have problems with maintaining appropriate lane position, steering steadiness and gap judgment compared to controls. Unsafe driving was associated with slower visual processing speed and impairments in contrast sensitivity, visual field sensitivity and executive function. Conclusions: Our findings suggest that some drivers with hemianopia or quadrantanopia are capable of safe driving performance, when compared to those of the same age with normal visual fields. This finding has important implications for the assessment of fitness to drive in this population.
Resumo:
Since 1986 Vietnam has been engaged in the transition from a centrally-controlled economy to a socialist-oriented market economy (the 'doi moi' renovation). The process for global economic integration has been slow given the magnitude of necessary reforms. Consequently technology entrepreneurs often discount Vietnam as a possible commercialization base which means that it is not realising its economic potential as a hub of technology transfer in the Asia-Pacific region. Three significant factors in the current uncertainty are Vietnam's laws on competition, intellectual property and technology transfer. Another problem is the lack of literature on these laws. This article first discusses the conceptual relationship between competition, intellectual property and technology transfer. Hopefully the article will provide some guidance for the technology entrepreneur considering foreign direct investment (FDI) in Vietnam. The bottom line is that these laws still need further reform to bolster entrepreneurial confidence.
Resumo:
In this chapter we propose clipping with amplitude and phase corrections to reduce the peak-to-average power ratio (PAR) of orthogonal frequency division multiplexed (OFDM) signals in high-speed wireless local area networks defined in IEEE 802.11a physical layer. The proposed techniques can be implemented with a small modification at the transmitter and the receiver remains standard compliant. PAR reduction as much as 4dB can be achieved by selecting a suitable clipping ratio and a correction factor depending on the constellation used. Out of band noise (OBN) is also reduced.
Resumo:
This literature review examines the relationship between traffic lane widths on the safety of road users. It focuses on the impacts of lane widths on motor vehicle behaviour and cyclists’ safety. The review commenced with a search of available databases. Peer reviewed articles and road authority reports were reviewed, as well as current engineering guidelines. Research shows that traffic lane width influences drivers’ perceived difficulty of the task, risk perception and possibly speed choices. Total roadway width, and the presence of onroad cycling facilities, influence cyclists’ positioning on the road. Lateral displacement between bicycles and vehicles is smallest when a marked bicycle facility is present. Reduced motor vehicle speeds can significantly improve the safety of vulnerable road users, particularly pedestrians and cyclists. It has been shown that if road lane widths on urban roads were reduced, through various mechanisms, it could result in a safety environment for all road users.
Resumo:
Today’s evolving networks are experiencing a large number of different attacks ranging from system break-ins, infection from automatic attack tools such as worms, viruses, trojan horses and denial of service (DoS). One important aspect of such attacks is that they are often indiscriminate and target Internet addresses without regard to whether they are bona fide allocated or not. Due to the absence of any advertised host services the traffic observed on unused IP addresses is by definition unsolicited and likely to be either opportunistic or malicious. The analysis of large repositories of such traffic can be used to extract useful information about both ongoing and new attack patterns and unearth unusual attack behaviors. However, such an analysis is difficult due to the size and nature of the collected traffic on unused address spaces. In this dissertation, we present a network traffic analysis technique which uses traffic collected from unused address spaces and relies on the statistical properties of the collected traffic, in order to accurately and quickly detect new and ongoing network anomalies. Detection of network anomalies is based on the concept that an anomalous activity usually transforms the network parameters in such a way that their statistical properties no longer remain constant, resulting in abrupt changes. In this dissertation, we use sequential analysis techniques to identify changes in the behavior of network traffic targeting unused address spaces to unveil both ongoing and new attack patterns. Specifically, we have developed a dynamic sliding window based non-parametric cumulative sum change detection techniques for identification of changes in network traffic. Furthermore we have introduced dynamic thresholds to detect changes in network traffic behavior and also detect when a particular change has ended. Experimental results are presented that demonstrate the operational effectiveness and efficiency of the proposed approach, using both synthetically generated datasets and real network traces collected from a dedicated block of unused IP addresses.
Resumo:
Media articles have promoted the view that cyclists are risktakers who disregard traffic regulations, but little is known about the contribution of cyclist risk-taking behaviours to crashes. This study examines the role of traffic violations in the 6774 police-reported bicycle crashes in Queensland between January 2000 and December 2008. Of the 6328 crashes involving bicycles and motor vehicles, cyclists were deemed to be at fault in 44.4% of the incidents. When motorists were determined to be at-fault, ‘failure to yield’ violations accounted for three of the four most reported contributing factors. In crashes where the cyclist was at fault, attention and inexperience were the most frequent contributing factors. There were 67 collisions between bicycles and pedestrians, with the cyclist at fault in 65.7%. During the data period, 302 single-bicycle crashes were reported. The most frequent contributing factors were avoidance actions to miss another road user and inattention or negligence.
Resumo:
Presentation on intelligent transport systems profects and traffic engineering,simulation and modelling by QUT researchers
Resumo:
The performance of an adaptive filter may be studied through the behaviour of the optimal and adaptive coefficients in a given environment. This thesis investigates the performance of finite impulse response adaptive lattice filters for two classes of input signals: (a) frequency modulated signals with polynomial phases of order p in complex Gaussian white noise (as nonstationary signals), and (b) the impulsive autoregressive processes with alpha-stable distributions (as non-Gaussian signals). Initially, an overview is given for linear prediction and adaptive filtering. The convergence and tracking properties of the stochastic gradient algorithms are discussed for stationary and nonstationary input signals. It is explained that the stochastic gradient lattice algorithm has many advantages over the least-mean square algorithm. Some of these advantages are having a modular structure, easy-guaranteed stability, less sensitivity to the eigenvalue spread of the input autocorrelation matrix, and easy quantization of filter coefficients (normally called reflection coefficients). We then characterize the performance of the stochastic gradient lattice algorithm for the frequency modulated signals through the optimal and adaptive lattice reflection coefficients. This is a difficult task due to the nonlinear dependence of the adaptive reflection coefficients on the preceding stages and the input signal. To ease the derivations, we assume that reflection coefficients of each stage are independent of the inputs to that stage. Then the optimal lattice filter is derived for the frequency modulated signals. This is performed by computing the optimal values of residual errors, reflection coefficients, and recovery errors. Next, we show the tracking behaviour of adaptive reflection coefficients for frequency modulated signals. This is carried out by computing the tracking model of these coefficients for the stochastic gradient lattice algorithm in average. The second-order convergence of the adaptive coefficients is investigated by modeling the theoretical asymptotic variance of the gradient noise at each stage. The accuracy of the analytical results is verified by computer simulations. Using the previous analytical results, we show a new property, the polynomial order reducing property of adaptive lattice filters. This property may be used to reduce the order of the polynomial phase of input frequency modulated signals. Considering two examples, we show how this property may be used in processing frequency modulated signals. In the first example, a detection procedure in carried out on a frequency modulated signal with a second-order polynomial phase in complex Gaussian white noise. We showed that using this technique a better probability of detection is obtained for the reduced-order phase signals compared to that of the traditional energy detector. Also, it is empirically shown that the distribution of the gradient noise in the first adaptive reflection coefficients approximates the Gaussian law. In the second example, the instantaneous frequency of the same observed signal is estimated. We show that by using this technique a lower mean square error is achieved for the estimated frequencies at high signal-to-noise ratios in comparison to that of the adaptive line enhancer. The performance of adaptive lattice filters is then investigated for the second type of input signals, i.e., impulsive autoregressive processes with alpha-stable distributions . The concept of alpha-stable distributions is first introduced. We discuss that the stochastic gradient algorithm which performs desirable results for finite variance input signals (like frequency modulated signals in noise) does not perform a fast convergence for infinite variance stable processes (due to using the minimum mean-square error criterion). To deal with such problems, the concept of minimum dispersion criterion, fractional lower order moments, and recently-developed algorithms for stable processes are introduced. We then study the possibility of using the lattice structure for impulsive stable processes. Accordingly, two new algorithms including the least-mean P-norm lattice algorithm and its normalized version are proposed for lattice filters based on the fractional lower order moments. Simulation results show that using the proposed algorithms, faster convergence speeds are achieved for parameters estimation of autoregressive stable processes with low to moderate degrees of impulsiveness in comparison to many other algorithms. Also, we discuss the effect of impulsiveness of stable processes on generating some misalignment between the estimated parameters and the true values. Due to the infinite variance of stable processes, the performance of the proposed algorithms is only investigated using extensive computer simulations.
Resumo:
This thesis presents an original approach to parametric speech coding at rates below 1 kbitsjsec, primarily for speech storage applications. Essential processes considered in this research encompass efficient characterization of evolutionary configuration of vocal tract to follow phonemic features with high fidelity, representation of speech excitation using minimal parameters with minor degradation in naturalness of synthesized speech, and finally, quantization of resulting parameters at the nominated rates. For encoding speech spectral features, a new method relying on Temporal Decomposition (TD) is developed which efficiently compresses spectral information through interpolation between most steady points over time trajectories of spectral parameters using a new basis function. The compression ratio provided by the method is independent of the updating rate of the feature vectors, hence allows high resolution in tracking significant temporal variations of speech formants with no effect on the spectral data rate. Accordingly, regardless of the quantization technique employed, the method yields a high compression ratio without sacrificing speech intelligibility. Several new techniques for improving performance of the interpolation of spectral parameters through phonetically-based analysis are proposed and implemented in this research, comprising event approximated TD, near-optimal shaping event approximating functions, efficient speech parametrization for TD on the basis of an extensive investigation originally reported in this thesis, and a hierarchical error minimization algorithm for decomposition of feature parameters which significantly reduces the complexity of the interpolation process. Speech excitation in this work is characterized based on a novel Multi-Band Excitation paradigm which accurately determines the harmonic structure in the LPC (linear predictive coding) residual spectra, within individual bands, using the concept 11 of Instantaneous Frequency (IF) estimation in frequency domain. The model yields aneffective two-band approximation to excitation and computes pitch and voicing with high accuracy as well. New methods for interpolative coding of pitch and gain contours are also developed in this thesis. For pitch, relying on the correlation between phonetic evolution and pitch variations during voiced speech segments, TD is employed to interpolate the pitch contour between critical points introduced by event centroids. This compresses pitch contour in the ratio of about 1/10 with negligible error. To approximate gain contour, a set of uniformly-distributed Gaussian event-like functions is used which reduces the amount of gain information to about 1/6 with acceptable accuracy. The thesis also addresses a new quantization method applied to spectral features on the basis of statistical properties and spectral sensitivity of spectral parameters extracted from TD-based analysis. The experimental results show that good quality speech, comparable to that of conventional coders at rates over 2 kbits/sec, can be achieved at rates 650-990 bits/sec.