64 resultados para Tooth calcification


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The endothelin axis is a group of signaling molecules and their receptors that have been implicated in vascularization of cancers, with their expression being observed to change in different cancer types. In this research, we examined the expression of endothelin 1 and endothelin receptor A at the protein and messenger RNA (mRNA) levels in 123 papillary thyroid carcinomas and 40 matched lymph nodes with metastatic papillary thyroid carcinomas. We found altered endothelin axis mRNA expression in several clinicopathologic parameters with increased endothelin 1 expression in thyroid papillary carcinoma showing stromal calcification, cancers in men, and primary cancers with lymph node metastases. Increased endothelin receptor A mRNA expression was noted in the larger cancers. There is a significant correlation between expression of endothelin receptor A and endothelin 1 in papillary thyroid carcinoma. Both endothelin receptor A and endothelin 1 mRNA expressions were significantly higher in metastatic carcinoma in the lymph node than in primary thyroid cancer. The metastatic carcinoma in the lymph node had increased expression compared with matched primary thyroid carcinoma. Expressions of endothelin 1 and endothelin receptor A were also documented as being high at the protein level. Our results indicate that in thyroid cancer, endothelin 1 and endothelin receptor A are associated with growth in advanced stages and lymph node metastases, likely through known angiogenic linkages. Targeting the endothelin axis may be useful in planning angiogenesis therapy for thyroid cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This project highlights the important role of cell signalling pathway during tooth regeneration. Biomaterials can be designed to activate relevant cell signals for the purpose of dental repair and tooth regeneration. Based on the results in the present project, strategies directly targeting cell signalling pathway may provide new approaches for periodontal regenerative tissue engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To identify specific markers of rectovaginal endometriotic nodule vasculature, highly enriched preparations of vascular endothelial cells and pericytes were obtained from endometriotic nodules and control endometrial and myometrial tissue by laser capture microdissection (LCM), and gene expression profiles were screened by microarray analysis. Of the 18 400 transcripts on the arrays, 734 were significantly overexpressed in vessels from fibromuscular tissue and 923 in vessels from stromal tissue of endometriotic nodules, compared with vessels dissected from control tissues. The most frequently expressed transcripts included known endothelial cell-associated genes, as well as transcripts with little or no previous association with vascular cells. The higher expression in blood vessels was further corroborated by immunohistochemical staining of six potential markers, five of which showed strong expression in pericytes. The most promising marker was matrix Gla protein, which was found to be present in both glandular epithelial cells and vascular endothelial cells of endometriotic lesions, although it was barely expressed at all in normal endometrium. LCM, combined with microarray analysis, constitutes a powerful tool for mapping the transcriptome of vascular cells. After immunohistochemical validation, markers of vascular endothelial and perivascular cells from endometriotic nodules could be identified, which may provide targets to improve early diagnosis or to selectively deliver therapeutic agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Periodontitis is an inflammatory disease that causes osteolysis and tooth loss. It is known that the nuclear factor kappa B (NF-κB) signalling pathway plays a key role in the progression of inflammation and osteoclastogenesis in periodontitis. Parthenolide (PTL), a sesquiterpene lactone extracted from the shoots of Tanacetum parthenium, has been shown to possess anti-inflammatory properties in various diseases. In the study reported herein, we investigated the effects of PTL on the inflammatory and osteoclastogenic response of human periodontal ligament-derived cells (hPDLCs) and revealed the signalling pathways in this process. Our results showed that PTL decreased NF-κB activation, I-κB degradation, and ERK activation in hPDLCs. PTL significantly reduced the expression of inflammatory (IL-1β, IL-6, and TNF-α) and osteoclastogenic (RANKL, OPG, and M-CSF) genes in LPS-stimulated hPDLCs. In addition, PTL attenuated hPDLC-induced osteoclastogenic differentiation of macrophages (RAW264.7 cells), as well as reducing gene expression of osteoclast-related markers in RAW264.7 cells in an hPDLC-macrophage coculture model. Taken together, these results demonstrate the anti-inflammatory and antiosteoclastogenic activities of PTL in hPDLCs in vitro. These data offer fundamental evidence supporting the potential use of PTL in periodontitis treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Canonical Wnt signaling is important in tooth development but it is unclear whether it can induce cementogenesis and promote the regeneration of periodontal tissues lost due to disease. Therefore, the aim of this study is to investigate the influence of canonical Wnt signaling enhancers on human periodontal ligament cell (hPDLCs) cementogenic differentiation in vitro and cementum repair in a rat periodontal defect model. Canonical Wnt signaling was induced by (i) local injection of lithium chloride; (ii) local injection of sclerostin antibody; and (iii) local injection of a lentiviral construct overexpressing β-catenin. The results showed that the local activation of canonical Wnt signaling resulted in significant new cellular cementum deposition and the formation of well-organized periodontal ligament fibers, which was absent in the control group. In vitro experiments using hPDLCs showed that the Wnt signaling pathway activators significantly increased mineralization, alkaline phosphatase (ALP) activity, and gene and protein expression of the bone and cementum markers osteocalcin (OCN), osteopontin (OPN), cementum protein 1 (CEMP1), and cementum attachment protein (CAP). Our results show that the activation of the canonical Wnt signaling pathway can induce in vivo cementum regeneration and in vitro cementogenic differentiation of hPDLCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adaptive phenotypic plasticity, the ability of an organism to change its phenotype to match local environments, is increasingly recognized for its contribution to evolution. However, few empirical studies have explored the molecular basis of plastic traits. The East African cichlid fish Astatoreochromis alluaudi displays adaptive phenotypic plasticity in its pharyngeal jaw apparatus, a structure that is widely seen as an evolutionary key innovation that has contributed to the remarkable diversity of cichlid fishes. It has previously been shown that in response to different diets, the pharyngeal jaws change their size, shape and dentition: hard diets induce an adaptive robust molariform tooth phenotype with short jaws and strong internal bone structures, while soft diets induce a gracile papilliform tooth phenotype with elongated jaws and slender internal bone structures. To gain insight into the molecular underpinnings of these adaptations and enable future investigations of the role that phenotypic plasticity plays during the formation of adaptive radiations, the transcriptomes of the two divergent jaw phenotypes were examined. Our study identified a total of 187 genes whose expression differs in response to hard and soft diets, including immediate early genes, extracellular matrix genes and inflammatory factors. Transcriptome results are interpreted in light of expression of candidate genesmarkers for tooth size and shape, bone cells and mechanically sensitive pathways. This study opens up new avenues of research at new levels of biological organization into the roles of phenotypic plasticity during speciation and radiation of cichlid fishes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, variation in the morphology of the lower pharyngeal element between two Sicilian populations of the rainbow wrasse Coris julis has been explored by the means of traditional morphometrics for size and geometric morphometrics for shape. Despite close geographical distance and probable high genetic flow between the populations, statistically significant differences have been found both for size and shape. In fact, one population shows a larger lower pharyngeal element that has a larger central tooth. Compared to the other population, this population also has medially enlarged lower pharyngeal jaws with a more pronounced convexity of the medial-posterior margin. The results are discussed in the light of a possible more pronounced durophagy of this population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations of UDP-N-acetyl-alpha-D-galactosamine polypeptide N-acetyl galactosaminyl transferase 3 (GALNT3) result in familial tumoural calcinosis (FTC) and the hyperostosis-hyperphosphataemia syndrome (HHS), which are autosomal recessive disorders characterised by soft-tissue calcification and hyperphosphataemia. To facilitate in vivo studies of these heritable disorders of phosphate homeostasis, we embarked on establishing a mouse model by assessing progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU), and identified a mutant mouse, TCAL, with autosomal recessive inheritance of ectopic calcification, which involved multiple tissues, and hyperphosphataemia; the phenotype was designated TCAL and the locus, Tcal. TCAL males were infertile with loss of Sertoli cells and spermatozoa, and increased testicular apoptosis. Genetic mapping localized Tcal to chromosome 2 (62.64-71.11 Mb) which contained the Galnt3. DNA sequence analysis identified a Galnt3 missense mutation (Trp589Arg) in TCAL mice. Transient transfection of wild-type and mutant Galnt3-enhanced green fluorescent protein (EGFP) constructs in COS-7 cells revealed endoplasmic reticulum retention of the Trp589Arg mutant and Western blot analysis of kidney homogenates demonstrated defective glycosylation of Galnt3 in Tcal/Tcal mice. Tcal/Tcal mice had normal plasma calcium and parathyroid hormone concentrations; decreased alkaline phosphatase activity and intact Fgf23 concentrations; and elevation of circulating 1,25-dihydroxyvitamin D. Quantitative reverse transcriptase-PCR (qRT-PCR) revealed that Tcal/Tcal mice had increased expression of Galnt3 and Fgf23 in bone, but that renal expression of Klotho, 25-hydroxyvitamin D-1α-hydroxylase (Cyp27b1), and the sodium-phosphate co-transporters type-IIa and -IIc was similar to that in wild-type mice. Thus, TCAL mice have the phenotypic features of FTC and HHS, and provide a model for these disorders of phosphate metabolism. © 2012 Esapa et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The genetic mutation resulting in osteogenesis imperfecta (OI) type V was recently characterised as a single point mutation (c.-14C > T) in the 5' untranslated region (UTR) of IFITM5, a gene encoding a transmembrane protein with expression restricted to skeletal tissue. This mutation creates an alternative start codon and has been shown in a eukaryotic cell line to result in a longer variant of IFITM5, but its expression has not previously been demonstrated in bone from a patient with OI type V. Methods Sanger sequencing of the IFITM5 5' UTR was performed in our cohort of subjects with a clinical diagnosis of OI type V. Clinical data was collated from referring clinicians. RNA was extracted from a bone sample from one patient and Sanger sequenced to determine expression of wild-type and mutant IFITM5. Results: All nine subjects with OI type V were heterozygous for the c.-14C > T IFITM5 mutation. Clinically, there was heterogeneity in phenotype, particularly in the manifestation of bone fragility amongst subjects. Both wild-type and mutant IFITM5 mRNA transcripts were present in bone. Conclusions The c.-14C > T IFITM5 mutation does not result in an RNA-null allele but is expressed in bone. Individuals with identical mutations in IFITM5 have highly variable phenotypic expression, even within the same family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose of review Our understanding of the causation of the chondrocalcinosis and other disorders characterized by ectopic mineralization is rapidly increasing, and genetic studies have contributed substantially to recent major advances in the field. This review will discuss what is known about the genetics of chondrocalcinosis and what we have learned from genetic studies to date. Recent findings: Chondrocalcinosis is one of a family of conditions associated with ectopic mineralization. This family also includes disorders of mineralization of bone and spinal and other ligaments, and vascular calcification. There has been increasing evidence of the key role of transport and metabolism of inorganic pyrophosphate (PPi) in control of mineralization, and as the likely explanation for the association of a variety of genetic variants with chondrocalcinosis and ectopic mineralization elsewhere. This may be an overly simplistic view of this family of conditions, with recent evidence suggesting that, for example, ANKH variants may not all predispose to chondrocalcinosis by effects on PPi transport, but may also influence chondrocyte maturation. Summary: Understanding the control of the process of mineralization and its tissue specificity are important steps in the search for rational therapies for these conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone diseases such as rickets and osteoporosis cause significant reduction in bone quantity and quality, which leads to mechanical abnormalities. However, the precise ultrastructural mechanism by which altered bone quality affects mechanical properties is not clearly understood. Here we demonstrate the functional link between altered bone quality (reduced mineralization) and abnormal fibrillar-level mechanics using a novel, real-time synchrotron X-ray nanomechanical imaging method to study a mouse model with rickets due to reduced extrafibrillar mineralization. A previously unreported N-ethyl-N-nitrosourea (ENU) mouse model for hypophosphatemic rickets (Hpr), as a result of missense Trp314Arg mutation of the phosphate regulating gene with homologies to endopeptidase on the X chromosome (Phex) and with features consistent with X-linked hypophosphatemic rickets (XLHR) in man, was investigated using in situ synchrotron small angle X-ray scattering to measure real-time changes in axial periodicity of the nanoscale mineralized fibrils in bone during tensile loading. These determine nanomechanical parameters including fibril elastic modulus and maximum fibril strain. Mineral content was estimated using backscattered electron imaging. A significant reduction of effective fibril modulus and enhancement of maximum fibril strain was found in Hpr mice. Effective fibril modulus and maximum fibril strain in the elastic region increased consistently with age in Hpr and wild-type mice. However, the mean mineral content was ∼21% lower in Hpr mice and was more heterogeneous in its distribution. Our results are consistent with a nanostructural mechanism in which incompletely mineralized fibrils show greater extensibility and lower stiffness, leading to macroscopic outcomes such as greater bone flexibility. Our study demonstrates the value of in situ X-ray nanomechanical imaging in linking the alterations in bone nanostructure to nanoscale mechanical deterioration in a metabolic bone disease. Copyright

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report describes a 32-year-old woman presenting since childhood with progressive calcium pyrophosphate disease (CPPD), characterized by severe arthropathy and chondrocalcinosis involving multiple peripheral joints and intervertebral disks. Because ANKH mutations have been previously described in familial CPPD, the proband's DNA was assessed at this locus by direct sequencing of promoter and coding regions and revealed 3 sequence variants in ANKH. Sequences of exon 1 revealed a novel isolated nonsynonymous mutation (c.13 C>T), altering amino acid in codon 5 from proline to serine (CCG>TCG). Sequencing of parental DNA revealed an identical mutation in the proband's father but not the mother. Subsequent clinical evaluation demonstrated extensive chondrocalcinosis and degenerative arthropathy in the proband's father. In summary, we report a novel mutation, not previously described, in ANKH exon 1, wherein serine replaces proline, in a case of early-onset severe CPPD associated with metabolic abnormalities, with similar findings in the proband's father.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Up-to-date evidence about levels and trends in disease and injury incidence, prevalence, and years lived with disability (YLDs) is an essential input into global, regional, and national health policies. In the Global Burden of Disease Study 2013 (GBD 2013), we estimated these quantities for acute and chronic diseases and injuries for 188 countries between 1990 and 2013. Methods Estimates were calculated for disease and injury incidence, prevalence, and YLDs using GBD 2010 methods with some important refi nements. Results for incidence of acute disorders and prevalence of chronic disorders are new additions to the analysis. Key improvements include expansion to the cause and sequelae list, updated systematic reviews, use of detailed injury codes, improvements to the Bayesian meta-regression method (DisMod-MR), and use of severity splits for various causes. An index of data representativeness, showing data availability, was calculated for each cause and impairment during three periods globally and at the country level for 2013. In total, 35 620 distinct sources of data were used and documented to calculated estimates for 301 diseases and injuries and 2337 sequelae. The comorbidity simulation provides estimates for the number of sequelae, concurrently, by individuals by country, year, age, and sex. Disability weights were updated with the addition of new population-based survey data from four countries. Findings Disease and injury were highly prevalent; only a small fraction of individuals had no sequelae. Comorbidity rose substantially with age and in absolute terms from 1990 to 2013. Incidence of acute sequelae were predominantly infectious diseases and short-term injuries, with over 2 billion cases of upper respiratory infections and diarrhoeal disease episodes in 2013, with the notable exception of tooth pain due to permanent caries with more than 200 million incident cases in 2013. Conversely, leading chronic sequelae were largely attributable to non-communicable diseases, with prevalence estimates for asymptomatic permanent caries and tension-type headache of 2∙4 billion and 1∙6 billion, respectively. The distribution of the number of sequelae in populations varied widely across regions, with an expected relation between age and disease prevalence. YLDs for both sexes increased from 537∙6 million in 1990 to 764∙8 million in 2013 due to population growth and ageing, whereas the age-standardised rate decreased little from 114∙87 per 1000 people to 110∙31 per 1000 people between 1990 and 2013. Leading causes of YLDs included low back pain and major depressive disorder among the top ten causes of YLDs in every country. YLD rates per person, by major cause groups, indicated the main drivers of increases were due to musculoskeletal, mental, and substance use disorders, neurological disorders, and chronic respiratory diseases; however HIV/AIDS was a notable driver of increasing YLDs in sub-Saharan Africa. Also, the proportion of disability-adjusted life years due to YLDs increased globally from 21·1% in 1990 to 31·2% in 2013. Interpretation Ageing of the world’s population is leading to a substantial increase in the numbers of individuals with sequelae of diseases and injuries. Rates of YLDs are declining much more slowly than mortality rates. The non-fatal dimensions of disease and injury will require more and more attention from health systems. The transition to nonfatal outcomes as the dominant source of burden of disease is occurring rapidly outside of sub-Saharan Africa. Our results can guide future health initiatives through examination of epidemiological trends and a better understanding of variation across countries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In summary, although many factors are likely to be involved in regulating calcification and ossification processes, studies of the causation of articular chondrocalcinosis and disorders of spinal ossification, such as DISH and OPLL, implicate control over inorganic pyrophosphate levels as being one of the most important factors in their aetiopathogenesis. The findings of these studies may prove relevant to other rheumatic diseases in which ectopic ossification occurs, such as AS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coronary calcium scoring (CCS) has been a topic of great interest lately. In a large population-based study comprising 6,722 patients, Detrano et al. (1) have effectively shown that CCS can be a strong predictor of incident coronary heart disease among different racial groups. Henneman et al. (2) have, however, reported that CCS does not reliably exclude the presence of (significant) atherosclerosis. This topic is quite controversial as there is significant evidence from Detrano's work that higher CCS is associated with an increased risk of acute coronary events. We think that the location of calcium within the coronary arteries should also be considered. Li et al. (3,4) have shown that the position of the calcium in the plaque is a better determinant of plaque vulnerability than the total calcium load. Using a biomechanical model, predicted maximum stress was found to increase by 47.5% when calcium deposits were located in the thin fibrous cap. The presence of calcium deposits in the lipid core or remote from the fibrous cap resulted in no increase in maximum stress. It was also noted that the presence of calcification within the lipid core may even stabilize the plaque. Integration of calcium location in CCS will, therefore, enable better assessment of severity of atherosclerosis and prediction of future cardiovascular events.