83 resultados para Timing of deformation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The secretion of cytokines by immune cells plays a significant role in determining the course of an inflammatory response. The levels and timing of each cytokine released are critical for mounting an effective but confined response, whereas excessive or dysregulated inflammation contributes to many diseases. Cytokines are both culprits and targets for effective treatments in some diseases. The multiple points and mechanisms that have evolved for cellular control of cytokine secretion highlight the potency of these mediators and the fine tuning required to manage inflammation. Cytokine production in cells is regulated by cell signaling, and at mRNA and protein synthesis levels. Thereafter, the intracellular transport pathways and molecular trafficking machinery have intricate and essential roles in dictating the release and activity of cytokines. The trafficking machinery and secretory (exocytic) pathways are complex and highly regulated in many cells, involving specialized membranes, molecules and organelles that enable these cells to deliver cytokines to often-distinct areas of the cell surface, in a timely manner. This review provides an overview of secretory pathways - both conventional and unconventional - and key families of trafficking machinery. The prevailing knowledge about the trafficking and secretion of a number of individual cytokines is also summarized. In conclusion, we present emerging concepts about the functional plasticity of secretory pathways and their modulation for controlling cytokines and inflammation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Analysis of fossils from cave deposits at Mount Etna (eastern-central Queensland) has established that a species-rich rainforest palaeoenvironment existed in that area during the middle Pleistocene. This unexpected finding has implications for several fields (e.g., biogeography/phylogeography of rainforest-adapted taxa, and the impact of climate change on rainforest communities), but it was unknown whether the Mount Etna sites represented a small refugial patch of rainforest or was more widespread. In this study numerous bone deposits in caves in north-east Queensland are analysed to reconstruct the environmental history of the area during the late Quaternary. Study sites are in the Chillagoe/Mitchell Palmer and Broken River/Christmas Creek areas. The cave fossil records in these study areas are compared with dated (middle Pleistocene-Holocene) cave sites in the Mount Etna area. Substantial taxonomic work on the Mount Etna faunas (particularly dasyurid marsupials and murine rodents) is also presented as a prerequisite for meaningful comparison with the study sites further north. Middle Pleistocene sites at Mount Etna contain species indicative of a rainforest palaeoenvironment. Small mammal assemblages in the Mount Etna rainforest sites (>500-280 ka) are unexpectedly diverse and composed almost entirely of new species. Included in the rainforest assemblages are lineages with no extant representatives in rainforest (e.g., Leggadina), one genus previously known only from New Guinea (Abeomelomys), and forms that appear to bridge gaps between related but morphologically-divergent extant taxa ('B-rat' and 'Pseudomys C'). Curiously, some taxa (e.g., Melomys spp.) are notable for their absence from the Mount Etna rainforest sites. After 280 ka the rainforest faunas are replaced by species adapted to open, dry habitats. At that time the extinct ‘rainforest’ dasyurids and rodents are replaced by species that are either extant or recently extant. By the late Pleistocene all ‘rainforest’ and several ‘dry’ taxa are locally or completely extinct, and the small mammal fauna resembles that found in the area today. The faunal/environmental changes recorded in the Mount Etna sites were interpreted by previous workers as the result of shifts in climate during the Pleistocene. Many samples from caves in the Chillagoe/Mitchell-Palmer and Broken River/Christmas Creek areas are held in the Queensland Museum’s collection. These, supplemented with additional samples collected in the field as well as samples supplied by other workers, were systematically and palaeoecologically analysed for the first time. Palaeoecological interpretation of the faunal assemblages in the sites suggests that they encompass a similar array of palaeoenvironments as the Mount Etna sites. ‘Rainforest’ sites at the Broken River are here interpreted as being of similar age to those at Mount Etna, suggesting the possibility of extensive rainforest coverage in eastern tropical Queensland during part of the Pleistocene. Likewise, faunas suggesting open, dry palaeoenvironments are found at Chillagoe, the Broken River and Mount Etna, and may be of similar age. The 'dry' faunal assemblage at Mount Etna (Elephant hole Cave) dates to 205-170 ka. Dating of one of the Chillagoe sites (QML1067) produced a maximum age for the deposit of approximately 200 ka, and the site is interpreted as being close to that age, supporting the interpretation of roughly contemporaneous deposition at Mount Etna and Chillagoe. Finally, study sites interpreted as being of late Pleistocene-Holocene age show faunal similarities to sites of that age near Mount Etna. This study has several important implications for the biogeography and phylogeography of murine rodents, and represents a major advance in the study of the Australian murine fossil record. Likewise the survey of the northern study areas is the first systematic analysis of multiple sites in those areas, and is thus a major contribution to knowledge of tropical Australian faunas during the Quaternary. This analysis suggests that climatic changes during the Pleistocene affected a large area of eastern tropical Queensland in similar ways. Further fieldwork and dating is required to properly analyse the geographical extent and timing of faunal change in eastern tropical Queensland.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this chapter, we will present a contemporary review of the hitherto numerical characterization of nanowires (NWs). The bulk of the research reported in the literatures concern metallic NWs including Al, Cu, Au, Ag, Ni, and their alloys NWs. Research has also been reported for the investigation of some nonmetallic NWs, such as ZnO, GaN, SiC, SiO2. A plenty of researches have been conducted regarding the numerical investigation of NWs. Issues analyzed include structural changes under different loading situations, the formation and propagation of dislocations, and the effect of the magnitude of applied loading on deformation mechanics. Efforts have also been made to correlate simulation results with experimental measurements. However, direct comparisons are difficult since most simulations are carried out under conditions of extremely high strain/loading rates and small simulation samples due to computational limitations. Despite of the immense numerical studies of NWs, a significant work still lies ahead in terms of problem formulation, interpretation of results, identification and delineation of deformation mechanisms, and constitutive characterization of behavior. In this chapter, we present an introduction of the commonly adopted experimental and numerical approaches in studies of the deformation of NWs in Section 1. An overview of findings concerning perfect NWs under different loading situations, such as tension, compression, torsion, and bending are presented in Section 2. In Section 3, we will detail some recent results from the authors’ own work with an emphasis on the study of influences from different pre-existing defect on NWs. Some thoughts on future directions of the computational mechanics of NWs together with Conclusions will be given in the last section.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: UC is a disease of the entire urothelium, characterized by multiplicity and multifocality. The clonal relationship among multiple UCs has implications regarding adjuvant chemotherapy. It has been investigated in studies of chromosomal alteration and single gene mutation. However, these genetic changes can occur in unrelated tumors under similar carcinogenic selection pressures. Tumors with high MSI have numerous DNA mutations, of which many provide no selection benefit. While these tumors represent an ideal model for studying UC clonality, their low frequency has prevented their previous investigation. Materials and Methods: We investigated 32 upper and lower urinary tract UCs with high MSI and 4 nonUC primary cancers in 9 patients. We used the high frequency and specificity of individual DNA mutations in these tumors (MSI at 17 loci) and the early timing of epigenetic events (methylation of 7 gene promoters) to investigate tumor clonality. Results: Molecular alterations varied among tumors from different primary organs but they appeared related in the UCs of all 9 patients. While 7 patients had a high degree of concordance among UCs, in 2 the UCs shared only a few similar alterations. Genetic and epigenetic abnormalities were frequently found in normal urothelial samples. Conclusions: Multiple UCs in each patient appeared to arise from a single clone. The molecular order of tumor development varied from the timing of clinical presentation and suggested that residual malignant cells persist in the urinary tract despite apparent curative surgery. These cells lead to subsequent tumor relapse and new methods are required to detect and eradicate them.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is well known that a broad range of ocular anatomical and physiological parameters undergo significant diurnal variation. However, the natural diurnal variations that occur in the length of the human eye (axial length) and their underlying causes have been less well studied. Improvements in optical methods for the measurement of ocular biometrics now allow more precise and comprehensive measurements of axial length to be performed than has previously been possible. Research from animal models also suggests a link between diurnal axial length variations and longer term myopic eye growth, and that retinal image defocus can disrupt these diurnal rhythms in axial length. This research programme has examined the diurnal variations in axial length in young normal eyes, the contributing components and the influence of optical stimuli on these changes. In the first experiment, the normal pattern and consistency of the diurnal variations in axial length were examined at 10 different times (5 measurements each day, at ~ 3-hour intervals from ~ 9 am to ~ 9 pm) over 2 consecutive days on 30 young adult subjects (15 myopes, 15 emmetropes). Additionally, variations in a range of other ocular biometric measurements such as choroidal thickness, intraocular pressure, and other ocular biometrics were also explored as potential factors that may be associated with the observed variations in axial length. To investigate the potential influence of refractive error on diurnal axial length variations, the differences in the magnitude and pattern of diurnal variations in axial length between the myopic and emmetropic subjects were examined. Axial length underwent significant diurnal variation that was consistently observed over the 2 consecutive days of measurements, with the longest axial length typically occurring during the day, and the shortest at night. Significant diurnal variations were also observed in choroidal thickness, IOP and other ocular biometrics (such as central corneal thickness, anterior chamber depth and vitreous chamber depth) of the eye. Diurnal variations in vitreous chamber depth, IOP (positive associations) and choroidal thickness (negative association) were all significantly correlated with the diurnal changes in axial length. Choroidal thickness was found to fluctuate approximately in antiphase to the axial length changes, with the average timing of the longest axial length coinciding with the thinnest choroid and vice versa. There were no significant differences in the ocular diurnal variations associated with refractive error. Given that the diurnal changes in axial length could be associated with the changes in the eye’s optical quality, whether the optical quality of the eye also undergoes diurnal variation in the same cohort of young adult myopes and emmetropes over 2 consecutive days was also examined. Significant diurnal variations were observed only in the best sphere refraction (power vector M) and in the spherical aberration of the eye over two consecutive days of testing. The changes in the eyes lower and higher order ocular optics were not significantly associated with the diurnal variations in axial length and the other measured ocular biometric parameters. No significant differences were observed in the magnitude and timing of diurnal variations in lower-order and higher-order optics associated with refractive error. Since the small natural fluctuations in the eye’s optical quality did not appear to be sufficient to influence the natural diurnal fluctuations in ocular biometric parameters, in the next experiment, the influence of monocular myopic defocus (+1.50 DS) upon the normal diurnal variations in axial length and choroidal thickness of young adult emmetropic human subjects (n=13) imposed over a 12 hour period was examined. A series of axial length and choroidal thickness measurements (collected at ~3 hourly intervals, with the first measurement at ~9 am and the final measurement at ~9 pm) were obtained over three consecutive days. The natural diurnal rhythms (Day 1, no defocus), diurnal rhythms with monocular myopic defocus (Day 2, +1.50 DS spectacle lens over the right eye), and the recovery from any defocus induced changes (Day 3, no defocus) were examined. Significant diurnal variations over the course of the day were observed in both axial length and choroidal thickness on each of the three measurement days. The introduction of monocular myopic defocus led to significant reductions in the mean amplitude of diurnal change, and phase shifts in the peak timing of the diurnal rhythms in axial length and choroidal thickness. These defocus induced changes were found to be transient in nature and returned to normal the day following removal of the defocus. To further investigate the influence of optical stimuli on human diurnal rhythms, in the final experiment, the influence of monocular hyperopic defocus on the normal diurnal rhythms in axial length and choroidal thickness was examined in young adult emmetropic subjects (n=15). Similar to the previous experiment, the natural diurnal rhythms (Day 1, no defocus), diurnal rhythms with monocular hyperopic defocus (Day 2, -2.00 DS spectacle lens over the right eye), and the recovery from any defocus induced changes (Day 3, no defocus) were examined over three consecutive days. Both axial length and choroidal thickness underwent significant diurnal variations on each of the three days. The introduction of monocular hyperopic defocus resulted in a significant increase in the amplitude of diurnal change, but no change in the peak timing of diurnal rhythms in both parameters. The ocular changes associated with hyperopic defocus returned to normal, the day following removal of the defocus. This research has shown that axial length undergoes significant diurnal variation in young adult human eyes, and has shown that the natural diurnal variations in choroidal thickness and IOP are significantly associated, and may underlie these diurnal fluctuations in axial length. This work also demonstrated for the first time that exposing young human eyes to monocular myopic and hyperopic defocus leads to a significant disruption in the normal diurnal rhythms of axial length and choroidal thickness. These changes in axial length with defocus may reflect underlying mechanisms in the human eye that are involved in the regulation of longer term eye growth.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cell trajectory data is often reported in the experimental cell biology literature to distinguish between different types of cell migration. Unfortunately, there is no accepted protocol for designing or interpreting such experiments and this makes it difficult to quantitatively compare different published data sets and to understand how changes in experimental design influence our ability to interpret different experiments. Here, we use an individual based mathematical model to simulate the key features of a cell trajectory experiment. This shows that our ability to correctly interpret trajectory data is extremely sensitive to the geometry and timing of the experiment, the degree of motility bias and the number of experimental replicates. We show that cell trajectory experiments produce data that is most reliable when the experiment is performed in a quasi 1D geometry with a large number of identically{prepared experiments conducted over a relatively short time interval rather than few trajectories recorded over particularly long time intervals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Practice-led journalism research techniques were used in this study to produce a ‘first draft of history’ recording the human experience of survivors and rescuers during the January 2011 flash flood disaster in Toowoomba and the Lockyer Valley in Queensland, Australia. The study aimed to discover what can be learnt from engaging in journalistic reporting of natural disasters. This exegesis demonstrates that journalism can be both a creative practice and a research methodology. About 120 survivors, rescuers and family members of victims participated in extended interviews about what happened to them and how they survived. Their stories are the basis for two creative outputs of the study: a radio documentary and a non-fiction book, that document how and why people died, or survived, or were rescued. Listeners and readers are taken "into the flood" where they feel anxious for those in peril, relief when people are saved, and devastated when babies, children and adults are swept away to their deaths. In undertaking reporting about the human experience of the floods, several significant elements about journalistic reportage of disasters were exposed. The first related to the vital role that the online social media played during the disaster for individuals, citizen reporters, journalists and emergency services organisations. Online social media offer reporters powerful new reporting tools for both gathering and disseminating news. The second related to the performance of journalists in covering events involving traumatic experiences. Journalists are often required to cover trauma and are often amongst the first-responders to disasters. This study found that almost all of the disaster survivors who were approached were willing to talk in detail about their traumatic experiences. A finding of this project is that journalists who interview trauma survivors can develop techniques for improving their ability to interview people who have experienced traumatic events. These include being flexible with interview timing and selecting a location; empowering interviewees to understand they don’t have to answer every question they are asked; providing emotional security for interviewees; and by being committed to accuracy. Survivors may exhibit posttraumatic stress symptoms but some exhibit and report posttraumatic growth. The willingness of a high proportion of the flood survivors to participate in the flood research made it possible to document a relatively unstudied question within the literature about journalism and trauma – when and why disaster survivors will want to speak to reporters. The study sheds light on the reasons why a group of traumatised people chose to speak about their experiences. Their reasons fell into six categories: lessons need to be learned from the disaster; a desire for the public to know what had happened; a sense of duty to make sure warning systems and disaster responses to be improved in future; personal recovery; the financial disinterest of reporters in listening to survivors; and the timing of the request for an interview. Feedback to the creative-practice component of this thesis - the book and radio documentary - shows that these issues are not purely matters of ethics. By following appropriate protocols, it is possible to produce stories that engender strong audience responses such as that the program was "amazing and deeply emotional" and "community storytelling at its most important". Participants reported that the experience of the interview process was "healing" and that the creative outcome resulted in "a very precious record of an afternoon of tragedy and triumph and the bitter-sweetness of survival".

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Awareness to avoid losses and casualties due to rain-induced landslide is increasing in regions that routinely experience heavy rainfall. Improvements in early warning systems against rain-induced landslide such as prediction modelling using rainfall records, is urgently needed in vulnerable regions. The existing warning systems have been applied using stability chart development and real-time displacement measurement on slope surfaces. However, there are still some drawbacks such as: ignorance of rain-induced instability mechanism, mislead prediction due to the probabilistic prediction and short time for evacuation. In this research, a real-time predictive method was proposed to alleviate the drawbacks mentioned above. A case-study soil slope in Indonesia that failed in 2010 during rainfall was used to verify the proposed predictive method. Using the results from the field and laboratory characterizations, numerical analyses can be applied to develop a model of unsaturated residual soils slope with deep cracks and subject to rainwater infiltration. Real-time rainfall measurement in the slope and the prediction of future rainfall are needed. By coupling transient seepage and stability analysis, the variation of safety factor of the slope with time were provided as a basis to develop method for the real-time prediction of the rain-induced instability of slopes. This study shows the proposed prediction method has the potential to be used in an early warning system against landslide hazard, since the FOS value and the timing of the end-result of the prediction can be provided before the actual failure of the case study slope.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the advent of alternative fuels, such as biodiesels and related blends, it is important to develop an understanding of their effects on inter-cycle variability which, in turn, influences engine performance as well as its emission. Using four methanol trans-esterified biomass fuels of differing carbon chain length and degree of unsaturation, this paper provides insight into the effect that alternative fuels have on inter-cycle variability. The experiments were conducted with a heavy-duty Cummins, turbo-charged, common-rail compression ignition engine. Combustion performance is reported in terms of the following key in-cylinder parameters: indicated mean effective pressure (IMEP), net heat release rate (NHRR), standard deviation of variability (StDev), coefficient of variation (CoV), peak pressure, peak pressure timing and maximum rate of pressure rise. A link is also established between the cyclic variability and oxygen ratio, which is a good indicator of stoichiometry. The results show that the fatty acid structures did not have a significant effect on injection timing, injection duration, injection pressure, StDev of IMEP, or the timing of peak motoring and combustion pressures. However, a significant effect was noted on the premixed and diffusion combustion proportions, combustion peak pressure and maximum rate of pressure rise. Additionally, the boost pressure, IMEP and combustion peak pressure were found to be directly correlated to the oxygen ratio. The emission of particles positively correlates with oxygen content in the fuel as well as in the air-fuel mixture resulting in a higher total number of particles per unit of mass.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In South and Southeast Asia, postharvest loss causes material waste of up to 66% in fruits and vegetables, 30% in oilseeds and pulses, and 49% in roots and tubers. The efficiency of postharvest equipment directly affects industrial-scale food production. To enhance current processing methods and devices, it is essential to analyze the responses of food materials under loading operations. Food materials undergo different types of mechanical loading during postharvest and processing stages. Therefore, it is important to determine the properties of these materials under different types of loads, such as tensile, compression, and indentation. This study presents a comprehensive analysis of the available literature on the tensile properties of different food samples. The aim of this review was to categorize the available methods of tensile testing for agricultural crops and food materials to investigate an appropriate sample size and tensile test method. The results were then applied to perform tensile tests on pumpkin flesh and peel samples, in particular on arc-sided samples at a constant loading rate of 20 mm min-1. The results showed the maximum tensile stress of pumpkin flesh and peel samples to be 0.535 and 1.45 MPa, respectively. The elastic modulus of the flesh and peel samples was 6.82 and 25.2 MPa, respectively, while the failure modulus values were 14.51 and 30.88 MPa, respectively. The results of the tensile tests were also used to develop a finite element model of mechanical peeling of tough-skinned vegetables. However, to study the effects of deformation rate, moisture content, and texture of the tissue on the tensile responses of food materials, more investigation needs to be done in the future.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nanowires (NWs) have attracted appealing and broad application owing to their remarkable mechanical, optical, electrical, thermal and other properties. To unlock the revolutionary characteristics of NWs, a considerable body of experimental and theoretical work has been conducted. However, due to the extremely small dimensions of NWs, the application and manipulation of the in situ experiments involve inherent complexities and huge challenges. For the same reason, the presence of defects appears as one of the most dominant factors in determining their properties. Hence, based on the experiments' deficiency and the necessity of investigating different defects' influence, the numerical simulation or modelling becomes increasingly important in the area of characterizing the properties of NWs. It has been noted that, despite the number of numerical studies of NWs, significant work still lies ahead in terms of problem formulation, interpretation of results, identification and delineation of deformation mechanisms, and constitutive characterization of behaviour. Therefore, the primary aim of this study was to characterize both perfect and defected metal NWs. Large-scale molecular dynamics (MD) simulations were utilized to assess the mechanical properties and deformation mechanisms of different NWs under diverse loading conditions including tension, compression, bending, vibration and torsion. The target samples include different FCC metal NWs (e.g., Cu, Ag, Au NWs), which were either in a perfect crystal structure or constructed with different defects (e.g. pre-existing surface/internal defects, grain/twin boundaries). It has been found from the tensile deformation that Young's modulus was insensitive to different styles of pre-existing defects, whereas the yield strength showed considerable reduction. The deformation mechanisms were found to be greatly influenced by the presence of defects, i.e., different defects acted in the role of dislocation sources, and many affluent deformation mechanisms had been triggered. Similar conclusions were also obtained from the compressive deformation, i.e., Young's modulus was insensitive to different defects, but the critical stress showed evident reduction. Results from the bending deformation revealed that the current modified beam models with the considerations of surface effect, or both surface effect and axial extension effect were still experiencing certain inaccuracy, especially for the NW with ultra small cross-sectional size. Additionally, the flexural rigidity of the NW was found to be insensitive to different pre-existing defects, while the yield strength showed an evident decrease. For the resonance study, the first-order natural frequency of the NW with pre-existing surface defects was almost the same as that from the perfect NW, whereas a lower first-order natural frequency and a significantly degraded quality factor was observed for NWs with grain boundaries. Most importantly, the <110> FCC NWs were found to exhibit a novel beat phenomenon driven by a single actuation, which was resulted from the asymmetry in the lattice spacing in the (110) plane of the NW cross-section, and expected to exert crucial impacts on the in situ nanomechanical measurements. In particular, <110> Ag NWs with rhombic, truncated rhombic, and triangular cross-sections were found to naturally possess two first-mode natural frequencies, which were envisioned with applications in NEMS that could operate in a non-planar regime. The torsion results revealed that the torsional rigidity of the NW was insensitive to the presence of pre-existing defects and twin boundaries, but received evident reduction due to grain boundaries. Meanwhile, the critical angle decreased considerably for defected NWs. This study has provided a comprehensive and deep investigation on the mechanical properties and deformation mechanisms of perfect and defected NWs, which will greatly extend and enhance the existing knowledge and understanding of the properties/performance of NWs, and eventually benefit the realization of their full potential applications. All delineated MD models and theoretical analysis techniques that were established for the target NWs in this research are also applicable to future studies on other kinds of NWs. It has been suggested that MD simulation is an effective and excellent tool, not only for the characterization of the properties of NWs, but also for the prediction of novel or unexpected properties.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In Victoria, as in other jurisdictions, there is very little research on the potential risks and benefits of lane filtering by motorcyclists, particularly from a road safety perspective. This on-road proof of concept study aimed to investigate whether and how lane filtering influences motorcycle rider situation awareness at intersections and to address factors that need to be considered for the design of a larger study in this area. Situation awareness refers to road users’ understanding of ‘what is going on’ around them and is a critical commodity for safe performance. Twenty-five experienced motorcyclists rode their own instrumented motorcycle around an urban test route in Melbourne whilst providing verbal protocols. Lane filtering occurred in 27% of 43 possible instances in which there were one or more vehicles in the traffic queue and the traffic lights were red on approach to the intersection. A network analysis procedure, based on the verbal protocols provided by motorcyclists, was used to identify differences in motorcyclist situation awareness between filtering and non-filtering events. Although similarities in situation awareness across filtering and nonfiltering motorcyclists were found, the analysis revealed some differences. For example, filtering motorcyclists placed more emphasis on the timing of the traffic light sequence and on their own actions when moving to the front of the traffic queue, whilst non-filtering motorcyclists paid greater attention to traffic moving through the intersection and approaching from behind. Based on the results of this study, the paper discusses some methodological and theoretical issues to be addressed in a larger study comparing situation awareness between filtering and non-filtering motorcyclists.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: Regulation of skeletal muscle mass is highly dependent on contractile loading. The purpose of this study was to examine changes in growth factor and inflammatory pathways following high-frequency resistance training. METHODS: Using a novel design in which male Sprague-Dawley rats undertook a "stacked" resistance training protocol designed to generate a summation of transient exercise-induced signaling responses (four bouts of three sets × 10 repetitions of squat exercise, separated by 3 h of recovery), we determined the effects of high training frequency on signaling pathways and transcriptional activity regulating muscle mass. RESULTS: The stacked training regimen resulted in acute suppression of insulin-like growth factor 1 mRNA abundance (P < 0.05) and Akt phosphorylation (P < 0.05), an effect that persisted 48 h after the final training bout. Conversely, stacked training elicited a coordinated increase in the expression of tumor necrosis factor alpha, inhibitor kappa B kinase alpha/beta activity (P < 0.05), and p38 mitogen-activated protein kinase phosphorylation (P < 0.05) at 3 h after each training bout. In addition, the stacked series of resistance exercise bouts induced an increase in p70 S6 kinase phosphorylation 3 h after bouts ×3 and ×4, independent of the phosphorylation state of Akt. CONCLUSIONS: Our results indicate that high resistance training frequency extends the transient activation of inflammatory signaling cascades, concomitant with persistent suppression of key mediators of anabolic responses. We provide novel insights into the effects of the timing of exercise-induced overload and recovery on signal transduction pathways and transcriptional activity regulating skeletal muscle mass in vivo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: To investigate the diurnal variations in ocular wavefront aberrations over two consecutive days in young adult subjects. Materials and methods: Measurements of both lower-order (sphero-cylindrical refractive powers) and higher-order (3rd and 4th order aberration terms) ocular aberrations were collected for 30 young adult subjects at ten different times over two consecutive days using a Hartmann-Shack aberrometer. Fifteen subjects were myopic and 15 were emmetropic. Five sets of measurements were collected each day at approximately 3 hourly intervals, with the first measurement taken at ~9 am and the final measurement at ~9 pm. Results: Spherical equivalent refraction (p = 0.029) and spherical aberration (p = 0.043) were both found to undergo significant diurnal variation over the two measurement days. The spherical equivalent was typically found to be at a maximum (i.e. most hyperopic) at the morning measurement, with a small myopic shift of 0.37 ± 0.15 D observed over the course of the day. The mean spherical aberration of all subjects (0.038 ± 0.048 μm) was found to be positive during the day and gradually became more negative into the evening, with a mean amplitude of change of 0.036 ± 0.02 μm. None of the other considered sphero-cylindrical refractive power components or higher-order aberrations exhibited significant diurnal variation over the two days of the experiment (p>0.05). Except for the lower-order astigmatism at 90/180 deg (p = 0.040), there were no significant differences between myopes and emmetropes in the magnitude and timing of the observed diurnal variations (p>0.05). Conclusions: Significant diurnal variations in spherical equivalent and spherical aberration were consistently observed over two consecutive days of measurement. Research and clinical applications requiring precise refractive error and wavefront measurements should take these diurnal changes into account when interpreting wavefront data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective To examine the impact of applying for funding on personal workloads, stress and family relationships. Design Qualitative study of researchers preparing grant proposals. Setting Web-based survey on applying for the annual National Health and Medical Research Council (NHMRC) Project Grant scheme. Participants Australian researchers (n=215). Results Almost all agreed that preparing their proposals always took top priority over other work (97%) and personal (87%) commitments. Almost all researchers agreed that they became stressed by the workload (93%) and restricted their holidays during the grant writing season (88%). Most researchers agreed that they submitted proposals because chance is involved in being successful (75%), due to performance requirements at their institution (60%) and pressure from their colleagues to submit proposals (53%). Almost all researchers supported changes to the current processes to submit proposals (95%) and peer review (90%). Most researchers (59%) provided extensive comments on the impact of writing proposals on their work life and home life. Six major work life themes were: (1) top priority; (2) career development; (3) stress at work; (4) benefits at work; (5) time spent at work and (6) pressure from colleagues. Six major home life themes were: (1) restricting family holidays; (2) time spent on work at home; (3) impact on children; (4) stress at home; (5) impact on family and friends and (6) impact on partner. Additional impacts on the mental health and well-being of researchers were identified. Conclusions The process of preparing grant proposals for a single annual deadline is stressful, time consuming and conflicts with family responsibilities. The timing of the funding cycle could be shifted to minimise applicant burden, give Australian researchers more time to work on actual research and to be with their families.