244 resultados para Thrust controller


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter focuses on the implementation of the TS (Tagaki-Sugino) fuzzy controller for the Doubly Fed Induction Generator (DFIG) based wind generator. The conventional PI control loops for mantaining desired active power and DC capacitor voltage is compared with the TS fuzzy controllers. DFIG system is represented by a third-order model where electromagnetic transients of the stator are neglected. The effectiveness of the TS-fuzzy controller on the rotor speed oscillations and the DC capacitor voltage variations of the DFIG damping controller on converter ratings is also investigated. The results from the time domain simulations are presented to elucidate the effectiveness of the TS-fuzzy controller over the conventional PI controller in the DFIG system. The proposed TS-fuzzy con-troller can improve the fault ride through capability of DFIG compared to the conventional PI controller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Displacement of conventional synchronous generators by non-inertial units such as wind or solar generators will result in reduced-system inertia affecting under-frequency response. Frequency control is important to avoid equipment damage, load shedding, and possible blackouts. Wind generators along with energy storage systems can be used to improve the frequency response of low-inertia power system. This paper proposes a fuzzy-logic based frequency controller (FFC) for wind farms augmented with energy storage systems (wind-storage system) to improve the primary frequency response in future low-inertia hybrid power system. The proposed controller provides bidirectional real power injection using system frequency deviations and rate of change of frequency (RoCoF). Moreover, FFC ensures optimal use of energy from wind farms and storage units by eliminating the inflexible de-loading of wind energy and minimizing the required storage capacity. The efficacy of the proposed FFC is verified on the low-inertia hybrid power system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of hurdles must be overcome in order to integrate unmanned aircraft into civilian airspace for routine operations. The ability of the aircraft to land safely in an emergency is essential to reduce the risk to people, infrastructure and aircraft. To date, few field-demonstrated systems have been presented that show online re-planning and repeatability from failure to touchdown. This paper presents the development of the Guidance, Navigation and Control (GNC) component of an Automated Emergency Landing System (AELS) intended to address this gap, suited to a variety of fixed-wing aircraft. Field-tested on both a fixed-wing UAV and Cessna 172R during repeated emergency landing experiments, a trochoid-based path planner computes feasible trajectories and a simplified control system executes the required manoeuvres to guide the aircraft towards touchdown on a predefined landing site. This is achieved in zero-thrust conditions with engine forced to idle to simulate failure. During an autonomous landing, the controller uses airspeed, inertial and GPS data to track motion and maintains essential flight parameters to guarantee flyability, while the planner monitors glide ratio and re-plans to ensure approach at correct altitude. Simulations show reliability of the system in a variety of wind conditions and its repeated ability to land within the boundary of a predefined landing site. Results from field-tests for the two aircraft demonstrate the effectiveness of the proposed GNC system in live operation. Results show that the system is capable of guiding the aircraft to close proximity of a predefined keyhole in nearly 100% of cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes the development and simulation of a variable rate controller for a 6-degree of freedom nonlinear model. The variable rate simulation model represents an off the shelf autopilot. Flight experiment involves risks and can be expensive. Therefore a dynamic model to understand the performance characteristics of the UAS in mission simulation before actual flight test or to obtain parameters needed for the flight is important. The control and guidance is implemented in Simulink. The report tests the use of the model for air search and air sampling path planning. A GUI in which a set of mission scenarios, in which two experts (mission expert, i.e. air sampling or air search and an UAV expert) interact, is presented showing the benefits of the method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel technique was used to measure emission factors for commonly used commercial aircraft including a range of Boeing and Airbus airframes under real world conditions. Engine exhaust emission factors for particles in terms of particle number and mass (PM2.5), along with those for CO2, and NOx were measured for over 280 individual aircraft during the various modes of landing/takeoff (LTO) cycle. Results from this study show that particle number, and NOx emission factors are dependant on aircraft engine thrust level. Minimum and maximum emissions factors for particle number, PM2.5, and NOx emissions were found to be in the range of 4.16×1015-5.42×1016 kg-1, 0.03-0.72 g.kg-1, and 3.25-37.94 g.kg-1 respectively for all measured airframes and LTO cycle modes. Number size distributions of emitted particles for the naturally diluted aircraft plumes in each mode of LTO cycle showed that particles were predominantly in the range of 4 to 100 nm in diameter in all cases. In general, size distributions exhibit similar modality during all phases of the LTO cycle. A very distinct nucleation mode was observed in all particle size distributions, except for taxiing and landing of A320 aircraft. Accumulation modes were also observed in all particle size distributions. Analysis of aircraft engine emissions during LTO cycle showed that aircraft thrust level is considerably higher during taxiing than idling suggesting that International Civil Aviation Organization (ICAO) standards need to be modified as the thrust levels for taxi and idle are considered to be the same (7% of total thrust) [1].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of computing to support environmental planning and the development of land use models dates back to the late 1950s. The main thrust of computing applications, which by the early 1980s increasingly included the use of geospatial technologies, is their contribution to better planning and decision making. The computing tools and technologies are designed to enhance the planners’ capability to deal with complex environments and to plan for prosperous and livable communities. This paper examines the role of Information Technologies (IT) and particularly Internet Based Geographic Information Systems (Internet GIS) as spatial decision support systems to aid community based local decision making. The paper also covers the advantages and challenges of these internet based mapping applications and tools for collaborative decision making on the environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amphibian is an 10’00’’ musical work which explores new musical interfaces and approaches to hybridising performance practices from the popular music, electronic dance music and computer music traditions. The work is designed to be presented in a range of contexts associated with the electro-acoustic, popular and classical music traditions. The work is for two performers using two synchronised laptops, an electric guitar and a custom designed gestural interface for vocal performers - the e-Mic (Extended Mic-stand Interface Controller). This interface was developed by one of the co-authors, Donna Hewitt. The e-Mic allows a vocal performer to manipulate the voice in real time through the capture of physical gestures via an array of sensors - pressure, distance, tilt - along with ribbon controllers and an X-Y joystick microphone mount. Performance data are then sent to a computer, running audio-processing software, which is used to transform the audio signal from the microphone. In this work, data is also exchanged between performers via a local wireless network, allowing performers to work with shared data streams. The duo employs the gestural conventions of guitarist and singer (i.e. 'a band' in a popular music context), but transform these sounds and gestures into new digital music. The gestural language of popular music is deliberately subverted and taken into a new context. The piece thus explores the nexus between the sonic and performative practices of electro acoustic music and intelligent electronic dance music (‘idm’). This work was situated in the research fields of new musical interfacing, interaction design, experimental music composition and performance. The contexts in which the research was conducted were live musical performance and studio music production. The work investigated new methods for musical interfacing, performance data mapping, hybrid performance and compositional practices in electronic music. The research methodology was practice-led. New insights were gained from the iterative experimental workshopping of gestural inputs, musical data mapping, inter-performer data exchange, software patch design, data and audio processing chains. In respect of interfacing, there were innovations in the design and implementation of a novel sensor-based gestural interface for singers, the e-Mic, one of the only existing gestural controllers for singers. This work explored the compositional potential of sharing real time performance data between performers and deployed novel methods for inter-performer data exchange and mapping. As regards stylistic and performance innovation, the work explored and demonstrated an approach to the hybridisation of the gestural and sonic language of popular music with recent ‘post-digital’ approaches to laptop based experimental music The development of the work was supported by an Australia Council Grant. Research findings have been disseminated via a range of international conference publications, recordings, radio interviews (ABC Classic FM), broadcasts, and performances at international events and festivals. The work was curated into the major Australian international festival, Liquid Architecture, and was selected by an international music jury (through blind peer review) for presentation at the International Computer Music Conference in Belfast, N. Ireland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nodule is 19'54" musical work for two electronic music performers, two laptop computers and a custom built, sensor-based microphone controller - the e-Mic (Extended Mic-stand Interface Controller). This interface was developed by one of the co-authors, Donna Hewitt. The e-Mic allows a vocal performer to manipulate their voice in real time by capturing physical gestures via an array of sensors - pressure, distance, tilt – in addition to ribbon controllers and an X-Y joystick microphone mount. Performance data are then sent to a computer, running audio-processing software, which is used to transform the audio signal from the microphone in real time. The work seeks to explore the liminal space between the electro-acoustic music tradition and more recent developments in the electronic dance music tradition. It does so on both a performative (gestural) and compositional (sonic) level. Visually, the performance consists of a singer and a laptop performer, hybridising the gestural context of these traditions. On a sonic level, the work explores hybridity at deeper levels of the musical structure than simple bricolage or collage approaches. Hybridity is explored at the level of the sonic gesture (source material), in production (audio processing gestures), in performance gesture, and in approaches to the use of the frequency spectrum, pulse and meter. The work was designed to be performed in a range of contexts from concert halls, to clubs, to rock festivals, across a range of staging and production platforms. As a consequence, the work has been tested in a range of audience contexts, and has allowed the transportation of compositional and performance practices across traditional audience demographic boundaries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the last two decades heart disease has been the highest single cause of death for the human population. With an alarming number of patients requiring heart transplant, and donations not able to satisfy the demand, treatment looks to mechanical alternatives. Rotary Ventricular Assist Devices, VADs, are miniature pumps which can be implanted alongside the heart to assist its pumping function. These constant flow devices are smaller, more efficient and promise a longer operational life than more traditional pulsatile VADs. The development of rotary VADs has focused on single pumps assisting the left ventricle only to supply blood for the body. In many patients however, failure of both ventricles demands that an additional pulsatile device be used to support the failing right ventricle. This condition renders them hospital bound while they wait for an unlikely heart donation. Reported attempts to use two rotary pumps to support both ventricles concurrently have warned of inherent haemodynamic instability. Poor balancing of the pumps’ flow rates quickly leads to vascular congestion increasing the risk of oedema and ventricular ‘suckdown’ occluding the inlet to the pump. This thesis introduces a novel Bi-Ventricular Assist Device (BiVAD) configuration where the pump outputs are passively balanced by vascular pressure. The BiVAD consists of two rotary pumps straddling the mechanical passive controller. Fluctuations in vascular pressure induce small deflections within both pumps adjusting their outputs allowing them to maintain arterial pressure. To optimise the passive controller’s interaction with the circulation, the controller’s dynamic response is optimised with a spring, mass, damper arrangement. This two part study presents a comprehensive assessment of the prototype’s ‘viability’ as a support device. Its ‘viability’ was considered based on its sensitivity to pathogenic haemodynamics and the ability of the passive response to maintain healthy circulation. The first part of the study is an experimental investigation where a prototype device was designed and built, and then tested in a pulsatile mock circulation loop. The BiVAD was subjected to a range of haemodynamic imbalances as well as a dynamic analysis to assess the functionality of the mechanical damper. The second part introduces the development of a numerical program to simulate human circulation supported by the passively controlled BiVAD. Both investigations showed that the prototype was able to mimic the native baroreceptor response. Simulating hypertension, poor flow balancing and subsequent ventricular failure during BiVAD support allowed the passive controller’s response to be assessed. Triggered by the resulting pressure imbalance, the controller responded by passively adjusting the VAD outputs in order to maintain healthy arterial pressures. This baroreceptor-like response demonstrated the inherent stability of the auto regulating BiVAD prototype. Simulating pulmonary hypertension in the more observable numerical model, however, revealed a serious issue with the passive response. The subsequent decrease in venous return into the left heart went unnoticed by the passive controller. Meanwhile the coupled nature of the passive response not only decreased RVAD output to reduce pulmonary arterial pressure, but it also increased LVAD output. Consequently, the LVAD increased fluid evacuation from the left ventricle, LV, and so actually accelerated the onset of LV collapse. It was concluded that despite the inherently stable baroreceptor-like response of the passive controller, its lack of sensitivity to venous return made it unviable in its present configuration. The study revealed a number of other important findings. Perhaps the most significant was that the reduced pulse experienced during constant flow support unbalanced the ratio of effective resistances of both vascular circuits. Even during steady rotary support therefore, the resulting ventricle volume imbalance increased the likelihood of suckdown. Additionally, mechanical damping of the passive controller’s response successfully filtered out pressure fluctuations from residual ventricular function. Finally, the importance of recognising inertial contributions to blood flow in the atria and ventricles in a numerical simulation were highlighted. This thesis documents the first attempt to create a fully auto regulated rotary cardiac assist device. Initial results encourage development of an inlet configuration sensitive to low flow such as collapsible inlet cannulae. Combining this with the existing baroreceptor-like response of the passive controller will render a highly stable passively controlled BiVAD configuration. The prototype controller’s passive interaction with the vasculature is a significant step towards a highly stable new generation of artificial heart.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the stability of an autonomous microgrid with multiple distributed generators (DG) is studied through eigenvalue analysis. It is assumed that all the DGs are connected through Voltage Source Converter (VSC) and all connected loads are passive. The VSCs are controlled by state feedback controller to achieve desired voltage and current outputs that are decided by a droop controller. The state space models of each of the converters with its associated feedback are derived. These are then connected with the state space models of the droop, network and loads to form a homogeneous model, through which the eigenvalues are evaluated. The system stability is then investigated as a function of the droop controller real and reac-tive power coefficients. These observations are then verified through simulation studies using PSCAD/EMTDC. It will be shown that the simulation results closely agree with stability be-havior predicted by the eigenvalue analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of this Handbook is on Australasia (a region loosely recognized as that which includes Australia and New Zealand plus nearby Pacific nations such as Papua New Guinea, Solomon Islands, Fiji, Tonga, Vanuatu, and the Samoan islands) science education and the scholarship that most closely supports this program. The reviews of the research situate what has been accomplished within a given field in Australasian rather than international context. The purpose therefore is to articulate and exhibit regional networks and trends that produced specific forms of science education. The thrust lies in identifying the roots of research programs and sketching trajectories—focusing the changing façade of problems and solutions within regional contexts. The approach allows readers review what has been done and accomplished, what is missing, and what might be done next.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Positive Buck- Boost (PBB) converter is a known DC-DC converter that can operate in step up and step down modes. Unlike Buck, Boost, and Inverting Buck Boost converters, the inductor current of a PBB can be controlled independently of its voltage conversion ratio. In other words, the inductor of PBB can be utilised as an energy storage unit in addition to its main function of energy transfer. In this paper, the capability of PBB to store energy has been utilised to achieve robustness against input voltage fluctuations and output current changes. The control strategy has been developed to keep accuracy, affordability, and simplicity acceptable. To improve the efficiency of the system a Smart Load Controller (SLC) has been suggested. Applying SLC extra current storage occurs when there is sudden loads change otherwise little extra current is stored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emissions from airport operations are of significant concern because of their potential impact on local air quality and human health. The currently limited scientific knowledge of aircraft emissions is an important issue worldwide, when considering air pollution associated with airport operation, and this is especially so for ultrafine particles. This limited knowledge is due to scientific complexities associated with measuring aircraft emissions during normal operations on the ground. In particular this type of research has required the development of novel sampling techniques which must take into account aircraft plume dispersion and dilution as well as the various particle dynamics that can affect the measurements of the aircraft engine plume from an operational aircraft. In order to address this scientific problem, a novel mobile emission measurement method called the Plume Capture and Analysis System (PCAS), was developed and tested. The PCAS permits the capture and analysis of aircraft exhaust during ground level operations including landing, taxiing, takeoff and idle. The PCAS uses a sampling bag to temporarily store a sample, providing sufficient time to utilize sensitive but slow instrumental techniques to be employed to measure gas and particle emissions simultaneously and to record detailed particle size distributions. The challenges in relation to the development of the technique include complexities associated with the assessment of the various particle loss and deposition mechanisms which are active during storage in the PCAS. Laboratory based assessment of the method showed that the bag sampling technique can be used to accurately measure particle emissions (e.g. particle number, mass and size distribution) from a moving aircraft or vehicle. Further assessment of the sensitivity of PCAS results to distance from the source and plume concentration was conducted in the airfield with taxiing aircraft. The results showed that the PCAS is a robust method capable of capturing the plume in only 10 seconds. The PCAS is able to account for aircraft plume dispersion and dilution at distances of 60 to 180 meters downwind of moving a aircraft along with particle deposition loss mechanisms during the measurements. Characterization of the plume in terms of particle number, mass (PM2.5), gaseous emissions and particle size distribution takes only 5 minutes allowing large numbers of tests to be completed in a short time. The results were broadly consistent and compared well with the available data. Comprehensive measurements and analyses of the aircraft plumes during various modes of the landing and takeoff (LTO) cycle (e.g. idle, taxi, landing and takeoff) were conducted at Brisbane Airport (BNE). Gaseous (NOx, CO2) emission factors, particle number and mass (PM2.5) emission factors and size distributions were determined for a range of Boeing and Airbus aircraft, as a function of aircraft type and engine thrust level. The scientific complexities including the analysis of the often multimodal particle size distributions to describe the contributions of different particle source processes during the various stages of aircraft operation were addressed through comprehensive data analysis and interpretation. The measurement results were used to develop an inventory of aircraft emissions at BNE, including all modes of the aircraft LTO cycle and ground running procedures (GRP). Measurements of the actual duration of aircraft activity in each mode of operation (time-in-mode) and compiling a comprehensive matrix of gas and particle emission rates as a function of aircraft type and engine thrust level for real world situations was crucial for developing the inventory. The significance of the resulting matrix of emission rates in this study lies in the estimate it provides of the annual particle emissions due to aircraft operations, especially in terms of particle number. In summary, this PhD thesis presents for the first time a comprehensive study of the particle and NOx emission factors and rates along with the particle size distributions from aircraft operations and provides a basis for estimating such emissions at other airports. This is a significant addition to the scientific knowledge in terms of particle emissions from aircraft operations, since the standard particle number emissions rates are not currently available for aircraft activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the development and preliminary experimental evaluation of a visionbased docking system to allow an Autonomous Underwater Vehicle (AUV) to identify and attach itself to a set of uniquely identifiable targets. These targets, docking poles, are detected using Haar rectangular features and rotation of integral images. A non-holonomic controller allows the Starbug AUV to orient itself with respect to the target whilst maintaining visual contact during the manoeuvre. Experimental results show the proposed vision system is capable of robustly identifying a pair of docking poles simultaneously in a variety of orientations and lighting conditions. Experiments in an outdoor pool show that this vision system enables the AUV to dock autonomously from a distance of up to 4m with relatively low visibility.