52 resultados para Text-to-speech


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective To develop and evaluate machine learning techniques that identify limb fractures and other abnormalities (e.g. dislocations) from radiology reports. Materials and Methods 99 free-text reports of limb radiology examinations were acquired from an Australian public hospital. Two clinicians were employed to identify fractures and abnormalities from the reports; a third senior clinician resolved disagreements. These assessors found that, of the 99 reports, 48 referred to fractures or abnormalities of limb structures. Automated methods were then used to extract features from these reports that could be useful for their automatic classification. The Naive Bayes classification algorithm and two implementations of the support vector machine algorithm were formally evaluated using cross-fold validation over the 99 reports. Result Results show that the Naive Bayes classifier accurately identifies fractures and other abnormalities from the radiology reports. These results were achieved when extracting stemmed token bigram and negation features, as well as using these features in combination with SNOMED CT concepts related to abnormalities and disorders. The latter feature has not been used in previous works that attempted classifying free-text radiology reports. Discussion Automated classification methods have proven effective at identifying fractures and other abnormalities from radiology reports (F-Measure up to 92.31%). Key to the success of these techniques are features such as stemmed token bigrams, negations, and SNOMED CT concepts associated with morphologic abnormalities and disorders. Conclusion This investigation shows early promising results and future work will further validate and strengthen the proposed approaches.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

China’s biggest search engine has a constitutional right to filter its search results, a US court found last month. But that’s just the start of the story. Eight New York-based pro-democracy activists sued Baidu Inc in 2011, seeking damages because Baidu prevents their work from showing up in search results. Baidu follows Chinese law that requires it to censor politically sensitive results. But in what the plaintiffs’ lawyer has dubbed a “perfect paradox”, US District Judge Jesse Furman has dismissed the challenge, explaining that to hold Baidu liable for its decisions to censor pro-democracy content would itself infringe the right to free speech.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This publication arose from the interests of the chapter authors, ‘a small group of thoughtful people’ almost all of whom participated in one or both Transnational Dialogues in Research in Early Childhood Education for Sustainability, held in Stavanger, Norway in 2010 and Brisbane, Australia in 2011 (Refer Appendix 1 for list of participants). These meetings were the first time that a critical mass of researchers from vastly different parts of the globe - Norway, Sweden, Australia and New Zealand at the inaugural meeting, with additional participants from Korea, Japan and Singapore attending the second - had come together to debate, discuss and share ideas about research and theory in the emerging field of Early Childhood Education for Sustainability (ECEfS. Some of the researchers who joined these Transnational Dialogues, had met serendipitously at earlier conferences and meetings, or corresponded via email, but many had never met face-to-face. Now a significant number are contributing authors in this text. It is a testament to these researchers’ interest in this agenda that they mostly self-funded their travel and other costs to attend the Transnational Dialogues research meetings. While most chapter authors come from the field of early childhood education, a few are more aligned with education for sustainability/environmental education, while a much smaller number are already working at the intersection of early childhood education and education for sustainability. What we share as a group is a range of perspectives and orientations to research and to the research focus at the heart of this book - young children and their actual and potential capabilities as agents of change for sustainability. As researchers, regardless of experience and perspectives, participants knew they had something extra to offer - their expertise as researchers - providing scholarly insights into the work of practitioners, applying critically reflective lenses to curricula, pedagogies and assumptions, testing of ideas and theories, and presenting a sense for where ECEfS might fit or, indeed, go beyond norms and orthodoxies. This is a text, then, for both researchers and those whose primary interests lie in daily interactions with children, families and communities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: A major challenge for assessing students’ conceptual understanding of STEM subjects is the capacity of assessment tools to reliably and robustly evaluate student thinking and reasoning. Multiple-choice tests are typically used to assess student learning and are designed to include distractors that can indicate students’ incomplete understanding of a topic or concept based on which distractor the student selects. However, these tests fail to provide the critical information uncovering the how and why of students’ reasoning for their multiple-choice selections. Open-ended or structured response questions are one method for capturing higher level thinking, but are often costly in terms of time and attention to properly assess student responses. Purpose: The goal of this study is to evaluate methods for automatically assessing open-ended responses, e.g. students’ written explanations and reasoning for multiple-choice selections. Design/Method: We incorporated an open response component for an online signals and systems multiple-choice test to capture written explanations of students’ selections. The effectiveness of an automated approach for identifying and assessing student conceptual understanding was evaluated by comparing results of lexical analysis software packages (Leximancer and NVivo) to expert human analysis of student responses. In order to understand and delineate the process for effectively analysing text provided by students, the researchers evaluated strengths and weakness for both the human and automated approaches. Results: Human and automated analyses revealed both correct and incorrect associations for certain conceptual areas. For some questions, that were not anticipated or included in the distractor selections, showing how multiple-choice questions alone fail to capture the comprehensive picture of student understanding. The comparison of textual analysis methods revealed the capability of automated lexical analysis software to assist in the identification of concepts and their relationships for large textual data sets. We also identified several challenges to using automated analysis as well as the manual and computer-assisted analysis. Conclusions: This study highlighted the usefulness incorporating and analysing students’ reasoning or explanations in understanding how students think about certain conceptual ideas. The ultimate value of automating the evaluation of written explanations is that it can be applied more frequently and at various stages of instruction to formatively evaluate conceptual understanding and engage students in reflective

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Traditional text classification technology based on machine learning and data mining techniques has made a big progress. However, it is still a big problem on how to draw an exact decision boundary between relevant and irrelevant objects in binary classification due to much uncertainty produced in the process of the traditional algorithms. The proposed model CTTC (Centroid Training for Text Classification) aims to build an uncertainty boundary to absorb as many indeterminate objects as possible so as to elevate the certainty of the relevant and irrelevant groups through the centroid clustering and training process. The clustering starts from the two training subsets labelled as relevant or irrelevant respectively to create two principal centroid vectors by which all the training samples are further separated into three groups: POS, NEG and BND, with all the indeterminate objects absorbed into the uncertain decision boundary BND. Two pairs of centroid vectors are proposed to be trained and optimized through the subsequent iterative multi-learning process, all of which are proposed to collaboratively help predict the polarities of the incoming objects thereafter. For the assessment of the proposed model, F1 and Accuracy have been chosen as the key evaluation measures. We stress the F1 measure because it can display the overall performance improvement of the final classifier better than Accuracy. A large number of experiments have been completed using the proposed model on the Reuters Corpus Volume 1 (RCV1) which is important standard dataset in the field. The experiment results show that the proposed model has significantly improved the binary text classification performance in both F1 and Accuracy compared with three other influential baseline models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This 'project' investigates Janet Cardiff's Whispering Room. It examines how Cardiff deconstructs the privileging of the visual over all other corporeal senses in her work, the Whispering Room. Using sound as a fulcrum, Cardiff explores the links between subjects, collective narratives, memories, experiences and performances. Janet Cardiff destabilizes time and space and fractures the continuum through the use of sound. My 'project' celebrates sound as a transgressive medium — sound not as a gendered medium but as a vehicle in which to speak (to) gender. It explores how sound can destabilize notions of perception and reception and question art and museal practices. In the process this 'project' reveals the complexity of interpreting and representing art as an object. My aim is to reflect the very intertextual and expressionist collage that Cardiff has created in Whispering Room in my own text. Cardiff solicits the viewer's intimacy and participation. Whispering Room is a physical yet metonymic space in which Cardiff creates a place for performatvity, experience, memory, desire and speech, thus she opens up a space for the utterance and performance of the viewer. Viewers construct and create meaning/s for themselves within this mnemonic space by digging up their own memories, desires and reveries. The strength of Cardiff's work is that it relies on a viewer to perform, a body to trigger the pseudo-spectacle and a voice to interrupt the whispers. One might ask of Whispering Room where the illusionistic space begins and where the physical space ends. This 'project' investigates how in Whispering Room there is no one experience but many experiences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents 'vSpeak', the first initiative taken in Pakistan for ICT enabled conversion of dynamic Sign Urdu gestures into natural language sentences. To realize this, vSpeak has adopted a novel approach for feature extraction using edge detection and image compression which gives input to the Artificial Neural Network that recognizes the gesture. This technique caters for the blurred images as well. The training and testing is currently being performed on a dataset of 200 patterns of 20 words from Sign Urdu with target accuracy of 90% and above.