48 resultados para Techniques d’animation 3D et synthèse d’images
Resumo:
Recovering the motion of a non-rigid body from a set of monocular images permits the analysis of dynamic scenes in uncontrolled environments. However, the extension of factorisation algorithms for rigid structure from motion to the low-rank non-rigid case has proved challenging. This stems from the comparatively hard problem of finding a linear “corrective transform” which recovers the projection and structure matrices from an ambiguous factorisation. We elucidate that this greater difficulty is due to the need to find multiple solutions to a non-trivial problem, casting a number of previous approaches as alleviating this issue by either a) introducing constraints on the basis, making the problems nonidentical, or b) incorporating heuristics to encourage a diverse set of solutions, making the problems inter-dependent. While it has previously been recognised that finding a single solution to this problem is sufficient to estimate cameras, we show that it is possible to bootstrap this partial solution to find the complete transform in closed-form. However, we acknowledge that our method minimises an algebraic error and is thus inherently sensitive to deviation from the low-rank model. We compare our closed-form solution for non-rigid structure with known cameras to the closed-form solution of Dai et al. [1], which we find to produce only coplanar reconstructions. We therefore make the recommendation that 3D reconstruction error always be measured relative to a trivial reconstruction such as a planar one.
Resumo:
Controlling the morphology and size of titanium dioxide (TiO2) nanostructures is crucial to obtain superior photocatalytic, photovoltaic, and electrochemical properties. However, the synthetic techniques for preparing such structures, especially those with complex configurations, still remain a challenge because of the rapid hydrolysis of Ti-containing polymer precursors in aqueous solution. Herein, we report a completely novel approach-three- dimensional (3D) TiO2 nanostructures with favorable dendritic architectures-through a simple hydrothermal synthesis. The size of the 3D TiO2 dendrites and the morphology of the constituent nano-units, in the form of nanorods, nanoribbons, and nanowires, are controlled by adjusting the precursor hydrolysis rate and the surfactant aggregation. These novel configurations of TiO2 nanostructures possess higher surface area and superior electrochemical properties compared to nanoparticles with smooth surfaces. Our findings provide an effective solution for the synthesis of complex TiO2 nano-architectures, which can pave the way to further improve the energy storage and energy conversion efficiency of TiO 2-based devices.
Resumo:
Aujourd'hui, techniques et technologies interagissent avec le corps humain et donnent aux personnes la possibilité de reconstruire leur corps, mais aussi de l'améliorer et de l'augmenter. L'hybridation est un processus technologique visant à compenser les défaillances humaines. L'augmentation de la puissance d'être est exaltée (santé, sexualité, performance, jeunesse), pourtant son accès n'est pas pour tous. Ce livre propose de démêler les différentes représentations du corps hybride et les projets qui les sous-tendent.