52 resultados para TERNARY BLENDS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This presentation tells the story of an initiative in middle schooling at Kelvin Grove State College that begins in the Art studios, but reaches out to other disciplines and approaches, and to community and industry partners. It is inspired by the potential of 'future thinking' to become a compelling focus in contemporary art and design. Ethically it espouses a simple premise": every student in our classrooms now has a stake in creating livable, democratic and creative futures. Every student has the potential to be an active force in making that future. "100 Futures Now" is a project that envisages creative and imaginative students working in collaboration with artists and designers to visualize amazing futures and communicate their vision through art and design. "100 Futures Now" is one in a series of innovative curriculum initiatives at Kelvin Grove State College designed to build sustainable practice in arts education with the support of partners in industry and universities and with resident artists and designers. The model blends elements of art and design methodology to focus on the critical and creative thinking skills prioritised in ACARA and 21st century curriculum. The organisers are developing a sustainable model for working with resident artists that goes beyond a single arts intervention or extension/enrichment experience. In this model artists and designers are collaborators in the design of learning experiences that support future programs. This model also looks to transfer the benefits of residencies to the wider school community (in this case to middle schooling curriculum) and to teachers in other curriculum areas, and not exclusively to the immediate target group. In "100 Futures Now", story-making is the engine that powers the creative process. For this reason the program uses a series of imaginative scenarios, including those of speculative fiction and science, as departure points for inquiry, and applies the methodologies of arts and design practice to explore and express student story telling and story making. The story-making responses of student teams will naturally be expressed multimodally through visual art, design artifacts, installation, performance and digital works. The project’s focus on narratives and its modes of communication (performance/installation) are inspired by the work of experimental contemporary design practices and the speculative scenarios of U.K. based designers Anthony Dunne and Fiona Raby. Thanks to the support of an Arts Queensland Artist-in -Residence grant in 2014, resident artists and designers who work with a diversity of ideas and approaches ranging over science, bio-ethics, biodiversity, behavior and ethics, ambient sound, urbanism, food, and wearable design, will work with middle school students as catalysts for deeper thinking and creative action. All these rich fields for future speculation will become triggers for team inquiry into the deeper connections between the past, the present, and future challenges such as climate, waste, energy, sustainability and resilience. These imagined futures will form the platform for a critical, sustainability/design futures approach that will involve questioning assumptions and empowering students as agents rather than consumers of change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the biodiesel properties and effects of blends of oil methyl ester petroleum diesel on a CI direct injection diesel engine is investigated. Blends were obtained from the marine dinoflagellate Crypthecodinium cohnii and waste cooking oil. The experiment was conducted using a four-cylinder, turbo-charged common rail direct injection diesel engine at four loads (25%, 50%, 75% and 100%). Three blends (10%, 20% and 50%) of microalgae oil methyl ester and a 20% blend of waste cooking oil methyl ester were compared to petroleum diesel. To establish suitability of the fuels for a CI engine, the effects of the three microalgae fuel blends at different engine loads were assessed by measuring engine performance, i.e. mean effective pressure (IMEP), brake mean effective pressure (BMEP), in cylinder pressure, maximum pressure rise rate, brake-specific fuel consumption (BSFC), brake thermal efficiency (BTE), heat release rate and gaseous emissions (NO, NOx,and unburned hydrocarbons (UHC)). Results were then compared to engine performance characteristics for operation with a 20% waste cooking oil/petroleum diesel blend and petroleum diesel. In addition, physical and chemical properties of the fuels were measured. Use of microalgae methyl ester reduced the instantaneous cylinder pressure and engine output torque, when compared to that of petroleum diesel, by a maximum of 4.5% at 50% blend at full throttle. The lower calorific value of the microalgae oil methyl ester blends increased the BSFC, which ultimately reduced the BTE by up to 4% at higher loads. Minor reductions of IMEP and BMEP were recorded for both the microalgae and the waste cooking oil methyl ester blends at low loads, with a maximum of 7% reduction at 75% load compared to petroleum diesel. Furthermore, compared to petroleum diesel, gaseous emissions of NO and NOx, increased for operations with biodiesel blends. At full load, NO and NOx emissions increased by 22% when 50% microalgae blends were used. Petroleum diesel and a 20% blend of waste cooking oil methyl ester had emissions of UHC that were similar, but those of microalgae oil methyl ester/petroleum diesel blends were reduced by at least 50% for all blends and engine conditions. The tested microalgae methyl esters contain some long-chain, polyunsaturated fatty acid methyl esters (FAMEs) (C22:5 and C22:6) not commonly found in terrestrial-crop-derived biodiesels yet all fuel properties were satisfied or were very close to the ASTM 6751-12 and EN14214 standards. Therefore, Crypthecodinium cohnii- derived microalgae biodiesel/petroleum blends of up to 50% are projected to meet all fuel property standards and, engine performance and emission results from this study clearly show its suitability for regular use in diesel engines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The technique of photo-CELIV (charge extraction by linearly increasing voltage) is one of the more straightforward and popular approaches to measure the faster carrier mobility in measurement geometries that are relevant for operational solar cells and other optoelectronic devices. It has been used to demonstrate a time-dependent photocarrier mobility in pristine polymers, attributed to energetic relaxation within the density of states. Conversely, in solar cell blends, the presence or absence of such energetic relaxation on transport timescales remains under debate. We developed a complete numerical model and performed photo-CELIV experiments on the model high efficiency organic solar cell blend poly[3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-naphthalene] (PDPP-TNT):[6,6]-phenyl-C71-butyric-acid-methyl-ester (PC70BM). In the studied solar cells a constant, time-independent mobility on the scale relevant to charge extraction was observed, where thermalisation of photocarriers occurs on time scales much shorter than the transit time. Therefore, photocarrier relaxation effects are insignificant for charge transport in these efficient photovoltaic devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental study has been performed to investigate the ignition delay of a modern heavy-duty common-rail diesel engine run with fumigated ethanol substitutions up to 40% on an energy basis. The ignition delay was determined through the use of statistical modelling in a Bayesian framework this framework allows for the accurate determination of the start of combustion from single consecutive cycles and does not require any differentiation of the in-cylinder pressure signal. At full load the ignition delay has been shown to decrease with increasing ethanol substitutions and evidence of combustion with high ethanol substitutions prior to diesel injection have also been shown experimentally and by modelling. Whereas, at half load increasing ethanol substitutions have increased the ignition delay. A threshold absolute air to fuel ratio (mole basis) of above ~110 for consistent operation has been determined from the inter-cycle variability of the ignition delay, a result that agrees well with previous research of other in-cylinder parameters and further highlights the correlation between the air to fuel ratio and inter-cycle variability. Numerical modelling to investigate the sensitivity of ethanol combustion has also been performed. It has been shown that ethanol combustion is sensitive to the initial air temperature around the feasible operating conditions of the engine. Moreover, a negative temperature coefficient region of approximately 900{1050 K (the approximate temperature at fuel injection) has been shown with for n-heptane and n-heptane/ethanol blends in the numerical modelling. A consequence of this is that the dominate effect influencing the ignition delay under increasing ethanol substitutions may rather be from an increase in chemical reactions and not from in-cylinder temperature. Further investigation revealed that the chemical reactions at low ethanol substitutions are different compared to the high (> 20%) ethanol substitutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peggy Shaw’s RUFF, (USA 2013) and Queensland Theatre Company’s collaboration with Queensland University of Technology, Total Dik!, (Australia 2013) overtly and evocatively draw on an aestheticized use of the cinematic techniques and technologies of Chroma Key to reveal the tensions in their production and add layers to their performances. In doing so they offer invaluable insight where the filmic and theatrical approaches overlap. This paper draws on Eckersall, Grehan and Scheer’s New Media Dramaturgy (2014) to reposition the frame as a contribution to intermedial theatre and performance practices in light of increasing convergence between seemingly disparate discourses. In RUFF, the scenic environment replicates a chroma-key ‘studio’ which facilitates the reconstruction of memory displaced after a stroke. RUFF uses the screen and projections to recall crooners, lounge singers, movie stars, rock and roll bands, and an eclectic line of eccentric family members living inside Shaw. While the show pays tribute to those who have kept her company across decades of theatrical performance, use of non-composited chroma-key technique as a theatrical device and the work’s taciturn revelation of the production process during performance, play a central role in its exploration of the juxtaposition between its reconstructed form and content. In contrast Total Dik! uses real-time green screen compositing during performance as a scenic device. Actors manipulate scale models, refocus cameras and generate scenes within scenes in the construction of the work’s examination of an isolated Dictator. The ‘studio’ is again replicated as a site for (re)construction, only in this case Total Dik! actively seeks to reveal the process of production as the performance plays out. Building on RUFF, and other works such as By the Way, Meet Vera Stark, (2012) and Hotel Modern’s God’s Beard (2012), this work blends a convergence of mobile technologies, models, and green screen capture to explore aspects of transmedia storytelling in a theatrical environment (Jenkins, 2009, 2013). When a green screen is placed on stage, it reads at once as metaphor and challenge to the language of theatre. It becomes, or rather acts, as a ‘sign’ that alludes to the nature of the reconstructed, recomposited, manipulated and controlled. In RUFF and in Total Dik!, it is also a place where as a mode of production and subsequent reveal, it adds weight to performance. These works are informed by Auslander (1999) and Giesenkam (2007) and speak to and echo Lehmann’s Postdramatic Theatre (2006). This paper’s consideration of the integration of studio technique and live performance as a dynamic approach to multi-layered theatrical production develops our understanding of their combinatory use in a live performance environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Imaging genetics is a new field of neuroscience that blends methods from computational anatomy and quantitative genetics to identify genetic influences on brain structure and function. Here we analyzed brain MRI data from 372 young adult twins to identify cortical regions in which gray matter volume is influenced by genetic differences across subjects. Thickness maps, reconstructed from surface models of the cortical gray/white and gray/CSF interfaces, were smoothed with a 25 mm FWHM kernel and automatically parcellated into 34 regions of interest per hemisphere. In structural equation models fitted to volume values at each surface vertex, we computed components of variance due to additive genetic (A), shared (C) and unique (E) environmental factors, and tested their significance. Cortical regions in the vicinity of the perisylvian language cortex, and at the frontal and temporal poles, showed significant additive genetic variance, suggesting that volume measures from these regions may provide quantitative phenotypes to narrow the search for quantitative trait loci that influence brain structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.