62 resultados para Steam-boiler explosions
Resumo:
The conflicts in Iraq and Afghanistan have been epitomized by the insurgents’ use of the improvised explosive device against vehicle-borne security forces. These weapons, capable of causing multiple severely injured casualties in a single incident, pose the most prevalent single threat to Coalition troops operating in the region. Improvements in personal protection and medical care have resulted in increasing numbers of casualties surviving with complex lower limb injuries, often leading to long-term disability. Thus, there exists an urgent requirement to investigate and mitigate against the mechanism of extremity injury caused by these devices. This will necessitate an ontological approach, linking molecular, cellular and tissue interaction to physiological dysfunction. This can only be achieved via a collaborative approach between clinicians, natural scientists and engineers, combining physical and numerical modelling tools with clinical data from the battlefield. In this article, we compile existing knowledge on the effects of explosions on skeletal injury, review and critique relevant experimental and computational research related to lower limb injury and damage and propose research foci required to drive the development of future mitigation technologies.
Resumo:
The lower limb of military vehicle occupants has been the most injured body part due to undervehicle explosions in recent conflicts. Understanding the injury mechanism and causality of injury severity could aid in developing better protection. Therefore, we tested 4 different occupant postures (seated, brace, standing, standing with knee locked in hyper‐extension) in a simulated under‐vehicle explosion (solid blast) using our traumatic injury simulator in the laboratory; we hypothesised that occupant posture would affect injury severity. No skeletal injury was observed in the specimens in seated and braced postures. Severe, impairing injuries were observed in the foot of standing and hyper‐extended specimens. These results demonstrate that a vehicle occupant whose posture at the time of the attack incorporates knee flexion is more likely to be protected against severe skeletal injury to the lower leg.
Resumo:
Since World War I, explosions have accounted for over 70% of all injuries in conflict. With the development of improved personnel protection of the torso, improved medical care and faster aeromedical evacuation, casualties are surviving with more severe injuries to the extremities. Understanding the processes involved in the transfer of blast-induced shock waves through biological tissues is essential for supporting efforts aimed at mitigating and treating blast injury. Given the inherent heterogeneities in the human body, we argue that studying these processes demands a highly integrated approach requiring expertise in shock physics, biomechanics and fundamental biological processes. This multidisciplinary systems approach enables one to develop the experimental framework for investigating the material properties of human tissues that are subjected to high compression waves in blast conditions and the fundamental cellular processes altered by this type of stimuli. Ultimately, we hope to use the information gained from these studies in translational research aimed at developing improved protection for those at risk and improved clinical outcomes for those who have been injured from a blast wave.
Resumo:
United States copyright law -- two streams of computer copyright cases form basis for 'look and feel' litigation, literary work stream and audiovisual work stream -- literary work stream focuses on structure -- audiovisual work steam addresses appearance -- case studies
Resumo:
FOR SUGAR factories with cogeneration plants major changes to the process stations have been undertaken to reduce the consumption of exhaust steam from the turbines and maximise the generated power. In many cases the process steam consumption has been reduced from greater than 52% on cane to ~40% on cane. The main changes have been to install additional evaporation area at the front of the set, operate the pan stages on vapour from No 1 or No 2 effects and undertake juice heating using vapour bleed from evaporators as far down the set as the penultimate stage. Operationally, one of the main challenges has been to develop a control system for the evaporators that addresses the objectives of juice processing rate (throughput) and steam economy, while producing syrup consistently at the required brix and providing an adequate and consistent vapour pressure for the pan stage operations. The cyclic demand for vapour by batch pans causes process disturbances through the evaporator set and these must be regulated in an effective manner to satisfy the above list of objectives for the evaporator station. The impact of the cyclic pan stage vapour demand has been modelled to define the impact on juice rate, steam economy, syrup brix and head space pressures in the evaporators. Experiences with the control schemes used at Pioneer and Rocky Point Mills are discussed. For each factory the paper provides information on (a) the control system used, the philosophy behind the control system and experiences in reaching the current system for control (b) the performance of the control system to handle the disturbances imposed by the pan stage and operate within other constraints of the factory (c) deficiencies in the current system and plans for further improvements. Other processing changes to boost the performance of the evaporators are also discussed.
Resumo:
This paper develops and presents a fully coupled non-linear finite element procedure to treat the response of piles to ground shocks induced by underground explosions. The Arbitrary Lagrange Euler coupling formulation with proper state material parameters and equations are used in the study. Pile responses in four different soil types, viz, saturated soil, partially saturated soil and loose and dense dry soils are investigated and the results compared. Numerical results are validated by comparing with those from a standard design manual. Blast wave propagation in soils, horizontal pile deformations and damages in the pile are presented. The pile damage presented through plastic strain diagrams will enable the vulnerability assessment of the piles under the blast scenarios considered. The numerical results indicate that the blast performance of the piles embedded in saturated soil and loose dry soil are more severe than those in piles embedded in partially saturated soil and dense dry soil. Present findings should serve as a benchmark reference for future analysis and design.
Resumo:
The Japanese electricity industry has experienced regulatory reforms since the mid-1990s. This article measures productivity in Japan's steam power-generation sector and examines the effect of reforms on the productivity of this industry over the period 1978-2003. We estimate the Luenberger productivity indicator, which is a generalization of the commonly used Malmquist productivity index, using a data envelopment analysis approach. Factors associated with productivity change are investigated through dynamic generalized method of moments (GMM) estimation of panel data. Our empirical analysis shows that the regulatory reforms have contributed to productivity growth in the steam power-generation sector in Japan.
Resumo:
Driven by information accessibility-on-demand provided by the internet, education modes are changing from a teacher-led approach focused on content delivery and assessible outcomes, to a learner-based approach encouraging self-directed, peer-tutored, and cooperative learning. New pedagogies are required to extend learning beyond the classroom and traditional subject areas such as contemporary arts, in alignment with the cross disciplinary priorities of the Australian Curriculum and values of the International Baccalaureate Organisation. This research explores how partnerships with universities and cultural organisations are implicated in the generation of these new forms of pedagogy and contribute to the field of educational research within the context of Education Queensland’s Framework For Gifted Education. In particular, this paper explores a new pedagogical framework for highly capable year five to nine Queensland state school students at the intersection of arts, design and the sciences, which has arisen from an explicit secondary/ tertiary partnership between the Queensland University of Technology Creative Industries Faculty and Precincts and the Queensland Academies Young Scholars Program. The Young Scholars Program offers experiences in the International Baccalaureate and Australian Curriculum contexts to enhance outcomes via global understanding, unique industry partnerships and 21st century pedagogical innovation based not on 'content' but tacit/experiential learning concepts including immersive, creative, intellectual and social strategies. These strategies for highly capable students are centred around authentic opportunities, primary resources, transdisciplinary learning and relationships with likeminded peers including tertiary arts, design and STEM educators and students, professionals and researchers. The presentation details case studies which are hands-on real time workshops involving inquiry based challenges in the arts, design and sciences, mathematics, history, creative writing and other disciplines, with content drawn from collections from public institutions, academic research and tertiary pedagogy. Both programs implicate student collaboration and creative production as methodology/data capture for ongoing action research, in alignment with the Framework For Gifted Education’s emphasis on evidence-based practices. They also challenge gifted students “to continue their development through curricular activities that require depth of study, complexity of thinking, fast pace of learning, high-level skills development and/or creative and critical thinking (e.g. through independent investigations, tiered tasks, diverse real-world applications, mentors)”(Education Queensland, 2011:3). This presentation highlights the strengths of the ongoing collaboration between QUT Creative industries Faculty and Queensland Academies, which not only provides successful extra curricular activities for gifted students towards a place in the International Baccalaureate Program, but also provides mentoring opportunities for tertiary students in their field of endeavor to assist with their own learning, and unique research opportunities for the Faculty as it focuses on excellence in arts, design and creative education and research. Education Queensland.(2011). Framework For Gifted Education Revised Edition 2011 (accessed Nov 19 2011)
Resumo:
Background The expression of biomass-degrading enzymes (such as cellobiohydrolases) in transgenic plants has the potential to reduce the costs of biomass saccharification by providing a source of enzymes to supplement commercial cellulase mixtures. Cellobiohydrolases are the main enzymes in commercial cellulase mixtures. In the present study, a cellobiohydrolase was expressed in transgenic corn stover leaf and assessed as an additive for two commercial cellulase mixtures for the saccharification of pretreated sugar cane bagasse obtained by different processes. Results Recombinant cellobiohydrolase in the senescent leaves of transgenic corn was extracted using a simple buffer with no concentration step. The extract significantly enhanced the performance of Celluclast 1.5 L (a commercial cellulase mixture) by up to fourfold on sugar cane bagasse pretreated at the pilot scale using a dilute sulfuric acid steam explosion process compared to the commercial cellulase mixture on its own. Also, the extracts were able to enhance the performance of Cellic CTec2 (a commercial cellulase mixture) up to fourfold on a range of residues from sugar cane bagasse pretreated at the laboratory (using acidified ethylene carbonate/ethylene glycol, 1-butyl-3-methylimidazolium chloride, and ball-milling) and pilot (dilute sodium hydroxide and glycerol/hydrochloric acid steam explosion) scales. We have demonstrated using tap water as a solvent (under conditions that mimic an industrial process) extraction of about 90% recombinant cellobiohydrolase from senescent, transgenic corn stover leaf that had minimal tissue disruption. Conclusions The accumulation of recombinant cellobiohydrolase in senescent, transgenic corn stover leaf is a viable strategy to reduce the saccharification cost associated with the production of fermentable sugars from pretreated biomass. We envisage an industrial-scale process in which transgenic plants provide both fibre and biomass-degrading enzymes for pretreatment and enzymatic hydrolysis, respectively.
Resumo:
Increasing threat of terrorism highlights the importance of enhancing the resilience of underground tunnels to all hazards. This paper develops, applies and compares the Arbitrary Lagrangian Eulerian (ALE) and Smooth Particle Hydrodynamics (SPH) techniques to treat the response of buried tunnels to surface explosions. The results and outcomes of the two techniques were compared, along with results from existing test data. The comparison shows that the ALE technique is a better method for describing the tunnel response for above ground explosion with regards to modeling accuracy and computational efficiency. The ALE technique was then applied to treat the blast response of different types of segmented bored tunnels buried in dry sand. Results indicate that the most used modern ring type segmented tunnels were more flexible for in-plane response, however, they suffered permanent drifts between the rings. Hexagonal segmented tunnels responded with negligible drifts in the longitudinal direction, but the magnitudes of in-plane drifts were large and hence hazardous for the tunnel. Interlocking segmented tunnels suffered from permanent drifts in both the longitudinal and transverse directions. Multi-surface radial joints in both the hexagonal and interlocking segments affected the flexibility of the tunnel in the transverse direction. The findings offer significant new information in the behavior of segmented bored tunnels to guide their future implementation in civil engineering applications.
Resumo:
It is not uncommon to hear a person of interest described by their height, build, and clothing (i.e. type and colour). These semantic descriptions are commonly used by people to describe others, as they are quick to communicate and easy to understand. However such queries are not easily utilised within intelligent video surveillance systems, as they are difficult to transform into a representation that can be utilised by computer vision algorithms. In this paper we propose a novel approach that transforms such a semantic query into an avatar in the form of a channel representation that is searchable within a video stream. We show how spatial, colour and prior information (person shape) can be incorporated into the channel representation to locate a target using a particle-filter like approach. We demonstrate state-of-the-art performance for locating a subject in video based on a description, achieving a relative performance improvement of 46.7% over the baseline. We also apply this approach to person re-detection, and show that the approach can be used to re-detect a person in a video steam without the use of person detection.
Resumo:
A whole of factory model of a raw sugar factory was developed in SysCAD software to assess and improve factory operations. The integrated sugar factory model ‘Sugar-SysCAD’ includes individual models for milling, heating and clarification, evaporation, crystallisation, steam cycle, sugar dryer and process and injection water circuits. These individual unit operation models can be either used as standalone models to optimise the unit operation or in the integrated mode to provide more accurate prediction of the effects of changes in any part of the process on the outputs of the whole factory process. Using the integrated sugar factory model, the effect of specific process operations can be understood and practical solutions can be determined to address process problems. The paper presents two factory scenarios to show the capabilities of the whole of factory model.
Resumo:
The undesirable effects of roll motion of ships (rocking about the longitudinal axis) became noticeable in the mid-nineteenth century when significant changes were introduced to the design of ships as a result of sails being replaced by steam engines and the arrangement being changed from broad to narrow hulls. The combination of these changes led to lower transverse stability (lower restoring moment for a given angle of roll) with the consequence of larger roll motion. The increase in roll motion and its effect on cargo and human performance lead to the development several control devices that aimed at reducing and controlling roll motion. The control devices most commonly used today are fin stabilizers, rudder, anti-roll tanks, and gyrostabilizers. The use of different types of actuators for control of ship roll motion has been amply demonstrated for over 100 years. Performance, however, can still fall short of expectations because of difficulties associated with control system design, which have proven to be far from trivial due to fundamental performance limitations and large variations of the spectral characteristics of wave-induced roll motion. This short article provides an overview of the fundamentals of control design for ship roll motion reduction. The overview is limited to the most common control devices.
Resumo:
Australia's Science and Research Priorities focus on activating STEM researchers (science, technology, engineering, maths). In this article in The Conversation, Professor Marcus Foth argues that we need to fund more than just science priorities for Australia’s future.