336 resultados para Speech interaction
Resumo:
The interaction of quercetin, which is a bioflavonoid, with bovine serum albumin (BSA) was investigated under pseudo-physiological conditions by the application of UV–vis spectrometry, spectrofluorimetry and cyclic voltammetry (CV). These studies indicated a cooperative interaction between the quercetin–BSA complex and warfarin, which produced a ternary complex, quercetin–BSA–warfarin. It was found that both quercetin and warfarin were located in site I. However, the spectra of these three components overlapped and the chemometrics method – multivariate curve resolution-alternating least squares (MCR-ALS) was applied to resolve the spectra. The resolved spectra of quercetin–BSA and warfarin agreed well with their measured spectra, and importantly, the spectrum of the quercetin–BSA–warfarin complex was extracted. These results allowed the rationalization of the behaviour of the overlapping spectra. At lower concentrations ([warfarin] < 1 × 10−5 mol L−1), most of the site marker reacted with the quercetin–BSA, but free warfarin was present at higher concentrations. Interestingly, the ratio between quercetin–BSA and warfarin was found to be 1:2, suggesting a quercetin–BSA–(warfarin)2 complex, and the estimated equilibrium constant was 1.4 × 1011 M−2. The results suggest that at low concentrations, warfarin binds at the high-affinity sites (HAS), while low-affinity binding sites (LAS) are occupied at higher concentrations.
Resumo:
This study investigated the effects of visual status, driver age and the presence of secondary distracter tasks on driving performance. Twenty young (M = 26.8 years) and 19 old (M = 70.2 years) participants drove around a closed-road circuit under three visual (normal, simulated cataracts, blur) and three distracter conditions (none, visual, auditory). Simulated visual impairment, increased driver age and the presence of a distracter task detrimentally affected all measures of driving performance except gap judgments and lane keeping. Significant interaction effects were evident between visual status, age and distracters; simulated cataracts had the most negative impact on performance in the presence of visual distracters and a more negative impact for older drivers. The implications of these findings for driving behaviour and acquisition of driving-related information for people with common visual impairments are discussed
Resumo:
The Autistic Behavioural Indicators Instrument (ABII) is an 18-item instrument developed to identify children with Autistic Disorder (AD) based on the presence of unique autistic behavioural indicators. The ABII was administered to 20 children with AD, 20 children with speech and language impairment (SLI) and 20 typically developing (TD) children aged 2-6 years. Results indicated that the ABII discriminated children diagnosed with AD from those diagnosed with SLI and those who were TD, based on the presence of specific social attention, sensory, and behavioural symptoms. A combination of symptomology across these domains correctly classified 100% of children with and without AD. The paper concludes that the ABII shows considerable promise as an instrument for the early identification of AD.
Resumo:
This paper considers some of the implications of the rise of design as a master-metaphor of the information age. It compares the terms 'interaction design' and 'mass communication', suggesting that both can be seen as a contradiction in terms, inappropriately preserving an industrial-age division between producers and consumers. With the shift from mass media to interactive media, semiotic and political power seems to be shifting too - from media producers to designers. This paper argues that it is important for the new discipline of 'interactive design' not to fall into habits of thought inherited from the 'mass' industrial era. Instead it argues for the significance, for designers and producers alike, of what I call 'distributed expertise' -including social network markets, a DIY-culture, user-led innovation, consumer co-created content, and the use of Web 2.0 affordances for social, scientific and creative purposes as well as for entertainment. It considers the importance of the growth of 'distributed expertise' as part of a new paradigm in the growth of knowledge, which has 'evolved' through a number of phases, from 'abstraction' to 'representation', to 'productivity'. In the context of technologically mediated popular participation in the growth of knowledge and social relationships, the paper argues that design and media-production professions need to cross rather than to maintain the gap between experts and everyone else, enabling all the agents in the system to navigate the shift into the paradigm of mass productivity.
Resumo:
In the absence of telehealth technology, rural patients must travel to a regional or metropolitan hospital for a preadmission consultation one week before their surgery. Currently, examination of the patient’s chest using a stethoscope (auscultation) is not possible over a telehealth network as existing digital stethoscopes have been designed for in-person auscultation. We report on the initial phase of research which ultimately aims to design a digital stethoscope for use in the telehealth context. This initial research phase describes the complexity of the activity of preadmission clinics and the implications for the design of the stethoscope. The research is conducted through field studies of existing face-to-face and remote consultations.
Resumo:
Within the Australian wet tropics bioregion, only 900 000 hectares of once continuous rainforest habitat between Townsville and Cooktown now remains. While on the Atherton Tableland, only 4% of the rainforest that once occurred there remains today with remnant vegetation now forming a matrix of rainforest dispersed within agricultural land (sugarcane, banana, orchard crops, townships and pastoral land). Some biologists have suggested that remnants often support both faunal and floral communities that differ significantly from remaining continuous forest. Australian tropical forests possess a relatively high diversity of native small mammal species particularly rodents, which unlike larger mammalian and avian frugivores elsewhere, have been shown to be resilient to the effects of fragmentation, patch isolation and reduction in patch size. While small mammals often become the dominant mammalian frugivores, in terms of their relative abundance, the relationship that exists between habitat diversity and structure, and the impacts of small mammal foraging within fragmented habitat patches in Australia, is still poorly understood. The relationship between foraging behaviour and demography of two small mammal species, Rattus fuscipes and Melomys cervinipes, and food resources in fragmented rainforest sites, were investigated in the current study. Population densities of both species were strongly related with overall density of seed resources in all rainforest fragments. The distribution of both mammal species however, was found to be independent of the distribution of seed resources. Seed utilisation trials indicated that M.cervinipes and R.fuscipes had less impact on seed resources (extent of seed harvesting) than did other rainforest frugivores. Experimental feeding trials demonstrated that in 85% of fruit species tested, rodent feeding increased seed germination by a factor of 3.5 suggesting that in Australian tropical rainforest remnants, small mammals may play a significant role in enhancing germination of large seeded fruits. This study has emphasised the role of small mammals in tropical rainforest systems in north eastern Australia, in particular, the role that they play within isolated forest fragments where larger frugivorous species may be absent.
Resumo:
This paper describes an experiment undertaken to investigate intuitive interaction, particularly in older adults. Previous work has shown that intuitive interaction relies on past experience, and has also suggested that older people demonstrate less intuitive uses and slower times when completing set tasks with various devices. Similarly, this experiment showed that past experience with relevant products allowed people to use the interfaces of two different microwaves more quickly, although there were no significant differences between the different microwaves. It also revealed that certain aspects of cognitive decline related to aging, such as central executive function, have more impact on time, correct uses and intuitive uses than chronological age. Implications of these results and further work in this area are discussed.
Resumo:
Intuition is a type of cognitive processing that is often non-conscious and utilises stored experiential knowledge. Intuitive interaction involves the use of knowledge gained from other products and/or experiences. We have developed novel approaches and techniques for studying intuitive use of interfaces, and shown that intuitive interaction is based on past experience with similar artefacts. Based on our empirical work we have developed principles and tools for designers to assist them in making interfaces more intuitive. These principles are discussed in this paper.
Resumo:
In an automotive environment, the performance of a speech recognition system is affected by environmental noise if the speech signal is acquired directly from a microphone. Speech enhancement techniques are therefore necessary to improve the speech recognition performance. In this paper, a field-programmable gate array (FPGA) implementation of dual-microphone delay-and-sum beamforming (DASB) for speech enhancement is presented. As the first step towards a cost-effective solution, the implementation described in this paper uses a relatively high-end FPGA device to facilitate the verification of various design strategies and parameters. Experimental results show that the proposed design can produce output waveforms close to those generated by a theoretical (floating-point) model with modest usage of FPGA resources. Speech recognition experiments are also conducted on enhanced in-car speech waveforms produced by the FPGA in order to compare recognition performance with the floating-point representation running on a PC.
Resumo:
Purpose: The classic study of Sumby and Pollack (1954, JASA, 26(2), 212-215) demonstrated that visual information aided speech intelligibility under noisy auditory conditions. Their work showed that visual information is especially useful under low signal-to-noise conditions where the auditory signal leaves greater margins for improvement. We investigated whether simulated cataracts interfered with the ability of participants to use visual cues to help disambiguate the auditory signal in the presence of auditory noise. Methods: Participants in the study were screened to ensure normal visual acuity (mean of 20/20) and normal hearing (auditory threshold ≤ 20 dB HL). Speech intelligibility was tested under an auditory only condition and two visual conditions: normal vision and simulated cataracts. The light scattering effects of cataracts were imitated using cataract-simulating filters. Participants wore blacked-out glasses in the auditory only condition and lens-free frames in the normal auditory-visual condition. Individual sentences were spoken by a live speaker in the presence of prerecorded four-person background babble set to a speech-to-noise ratio (SNR) of -16 dB. The SNR was determined in a preliminary experiment to support 50% correct identification of sentence under the auditory only conditions. The speaker was trained to match the rate, intensity and inflections of a prerecorded audio track of everyday speech sentences. The speaker was blind to the visual conditions of the participant to control for bias.Participants’ speech intelligibility was measured by comparing the accuracy of their written account of what they believed the speaker to have said to the actual spoken sentence. Results: Relative to the normal vision condition, speech intelligibility was significantly poorer when participants wore simulated catarcts. Conclusions: The results suggest that cataracts may interfere with the acquisition of visual cues to speech perception.
Resumo:
In this thesis an investigation into theoretical models for formation and interaction of nanoparticles is presented. The work presented includes a literature review of current models followed by a series of five chapters of original research. This thesis has been submitted in partial fulfilment of the requirements for the degree of doctor of philosophy by publication and therefore each of the five chapters consist of a peer-reviewed journal article. The thesis is then concluded with a discussion of what has been achieved during the PhD candidature, the potential applications for this research and ways in which the research could be extended in the future. In this thesis we explore stochastic models pertaining to the interaction and evolution mechanisms of nanoparticles. In particular, we explore in depth the stochastic evaporation of molecules due to thermal activation and its ultimate effect on nanoparticles sizes and concentrations. Secondly, we analyse the thermal vibrations of nanoparticles suspended in a fluid and subject to standing oscillating drag forces (as would occur in a standing sound wave) and finally on lattice surfaces in the presence of high heat gradients. We have described in this thesis a number of new models for the description of multicompartment networks joined by a multiple, stochastically evaporating, links. The primary motivation for this work is in the description of thermal fragmentation in which multiple molecules holding parts of a carbonaceous nanoparticle may evaporate. Ultimately, these models predict the rate at which the network or aggregate fragments into smaller networks/aggregates and with what aggregate size distribution. The models are highly analytic and describe the fragmentation of a link holding multiple bonds using Markov processes that best describe different physical situations and these processes have been analysed using a number of mathematical methods. The fragmentation of the network/aggregate is then predicted using combinatorial arguments. Whilst there is some scepticism in the scientific community pertaining to the proposed mechanism of thermal fragmentation,we have presented compelling evidence in this thesis supporting the currently proposed mechanism and shown that our models can accurately match experimental results. This was achieved using a realistic simulation of the fragmentation of the fractal carbonaceous aggregate structure using our models. Furthermore, in this thesis a method of manipulation using acoustic standing waves is investigated. In our investigation we analysed the effect of frequency and particle size on the ability for the particle to be manipulated by means of a standing acoustic wave. In our results, we report the existence of a critical frequency for a particular particle size. This frequency is inversely proportional to the Stokes time of the particle in the fluid. We also find that for large frequencies the subtle Brownian motion of even larger particles plays a significant role in the efficacy of the manipulation. This is due to the decreasing size of the boundary layer between acoustic nodes. Our model utilises a multiple time scale approach to calculating the long term effects of the standing acoustic field on the particles that are interacting with the sound. These effects are then combined with the effects of Brownian motion in order to obtain a complete mathematical description of the particle dynamics in such acoustic fields. Finally, in this thesis, we develop a numerical routine for the description of "thermal tweezers". Currently, the technique of thermal tweezers is predominantly theoretical however there has been a handful of successful experiments which demonstrate the effect it practise. Thermal tweezers is the name given to the way in which particles can be easily manipulated on a lattice surface by careful selection of a heat distribution over the surface. Typically, the theoretical simulations of the effect can be rather time consuming with supercomputer facilities processing data over days or even weeks. Our alternative numerical method for the simulation of particle distributions pertaining to the thermal tweezers effect use the Fokker-Planck equation to derive a quick numerical method for the calculation of the effective diffusion constant as a result of the lattice and the temperature. We then use this diffusion constant and solve the diffusion equation numerically using the finite volume method. This saves the algorithm from calculating many individual particle trajectories since it is describes the flow of the probability distribution of particles in a continuous manner. The alternative method that is outlined in this thesis can produce a larger quantity of accurate results on a household PC in a matter of hours which is much better than was previously achieveable.
Resumo:
Automatic Speech Recognition (ASR) has matured into a technology which is becoming more common in our everyday lives, and is emerging as a necessity to minimise driver distraction when operating in-car systems such as navigation and infotainment. In “noise-free” environments, word recognition performance of these systems has been shown to approach 100%, however this performance degrades rapidly as the level of background noise is increased. Speech enhancement is a popular method for making ASR systems more ro- bust. Single-channel spectral subtraction was originally designed to improve hu- man speech intelligibility and many attempts have been made to optimise this algorithm in terms of signal-based metrics such as maximised Signal-to-Noise Ratio (SNR) or minimised speech distortion. Such metrics are used to assess en- hancement performance for intelligibility not speech recognition, therefore mak- ing them sub-optimal ASR applications. This research investigates two methods for closely coupling subtractive-type enhancement algorithms with ASR: (a) a computationally-efficient Mel-filterbank noise subtraction technique based on likelihood-maximisation (LIMA), and (b) in- troducing phase spectrum information to enable spectral subtraction in the com- plex frequency domain. Likelihood-maximisation uses gradient-descent to optimise parameters of the enhancement algorithm to best fit the acoustic speech model given a word se- quence known a priori. Whilst this technique is shown to improve the ASR word accuracy performance, it is also identified to be particularly sensitive to non-noise mismatches between the training and testing data. Phase information has long been ignored in spectral subtraction as it is deemed to have little effect on human intelligibility. In this work it is shown that phase information is important in obtaining highly accurate estimates of clean speech magnitudes which are typically used in ASR feature extraction. Phase Estimation via Delay Projection is proposed based on the stationarity of sinusoidal signals, and demonstrates the potential to produce improvements in ASR word accuracy in a wide range of SNR. Throughout the dissertation, consideration is given to practical implemen- tation in vehicular environments which resulted in two novel contributions – a LIMA framework which takes advantage of the grounding procedure common to speech dialogue systems, and a resource-saving formulation of frequency-domain spectral subtraction for realisation in field-programmable gate array hardware. The techniques proposed in this dissertation were evaluated using the Aus- tralian English In-Car Speech Corpus which was collected as part of this work. This database is the first of its kind within Australia and captures real in-car speech of 50 native Australian speakers in seven driving conditions common to Australian environments.