73 resultados para Silo discharge
Resumo:
Parameters of a discharge sustained in a planar magnetron configuration with crossed electric and magnetic fields are studied experimentally and numerically. By comparing the data obtained in the experiment with the results of calculations made using the proposed theoretical model, conclusion was made about the leading role of the turbulence-driven Bohm electron conductivity in the low-pressure operation mode (up to 1 Pa) of the discharge in crossed electric and magnetic fields. A strong dependence of the width of the cathode sputter trench, associated with the ionization region of the magnetron discharge, on the discharge parameters was observed in the experiments. The experimental data were used as input parameters in the discharge model that describes the motion of secondary electrons across the magnetic field in the ionization region and takes into account the classical, near-wall, and Bohm mechanisms of electron conductivity.
Resumo:
Catalytic probes are used for plasma diagnostics in order to quantify the density of neutral atoms. The probe response primarily depends on the probe material and its surface morphology. Here we report on the design, operation and modelling of the response of niobium pentoxide sensors with a flat and nanowire (NW) surfaces. These sensors were used to detect neutral oxygen atoms in the afterglow region of an inductively coupled rf discharge in oxygen. A very different response of the flat-surface and NW probes to the varying densities of oxygen atoms was explained by modelling heat conduction and taking into account the associated temperature gradients. It was found that the nanostructure probe can measure in a broader range than the flat oxide probe due to an increase in the surface to volume ratio, and the presence of nanostructures which act as a thermal barrier against sensor overheating. These results can be used for the development of the new generation of catalytic probes for gas/discharge diagnostics in a range of industrial and environmental applications.
Resumo:
The effect of near-sheath dusts on the rf power loss in a surface-wave-sustained gas discharge is studied. The planar plasma is bounded by a dielectric and consists of an inhomogeneous near-wall transition layer (sheath), a dusty plasma layer and an outer dust-free plasma. The discharge is maintained by high-frequency axially symmetrical surface waves. The surface-wave power loss from the most relevant dissipative mechanisms in typical discharge plasmas is analysed.
Ways to increase the length of single wall carbon nanotubes in a magnetically enhanced arc discharge
Resumo:
Ability to control the properties of single-wall nanotubes produced in the arc discharge is important for many practical applications. Our experiments suggest that the length and purity of single-wall nanotubes significantly increase when the magnetic field is applied to the arc discharge. A model of a single wall carbon nanotube interaction and growth in the thermal plasma was developed which considers several important effects such as anode ablation that supplies the carbon plasma in an anodic arc discharge technique, and the momentum, charge and energy transfer processes between nanotube and plasma. The numerical simulations based on Monte-Carlo technique were performed, which explain an increase of the nanotubes produced in the magnetic field - enhanced arc discharge.
Resumo:
Reliable calculations of the electron/ion energy losses in low-pressure thermally nonequilibrium low-temperature plasmas are indispensable for predictive modeling related to numerous applications of such discharges. The commonly used simplified approaches to calculation of electron/ion energy losses to the chamber walls use a number of simplifying assumptions that often do not account for the details of the prevailing electron energy distribution function (EEDF) and overestimate the contributions of the electron losses to the walls. By direct measurements of the EEDF and careful calculation of contributions of the plasma electrons in low-pressure inductively coupled plasmas, it is shown that the actual losses of kinetic energy of the electrons and ions strongly depend on the EEDF. It is revealed that the overestimates of the total electron/ion energy losses to the walls caused by improper assumptions about the prevailing EEDF and about the ability of the electrons to pass through the repulsive potential of the wall may lead to significant overestimates that are typically in the range between 9 and 32%. These results are particularly important for the development of power-saving strategies for operation of low-temperature, low-pressure gas discharges in diverse applications that require reasonably low power densities. © 2008 American Institute of Physics.
Resumo:
Understanding the generation of reactive species in a plasma is an important step towards creating reliable and robust plasma-aided nanofabrication processes. A two-dimensional fluid simulation of the number densities of surface preparation species in a low-temperature, low-pressure, non-equilibrium Ar+H2 plasma is conducted. The operating pressure and H2 partial pressure have been varied between 70-200 mTorr and 0.1-50%, respectively. An emphasis is placed on the application of these results to nanofabrication. A reasonable balance between operating pressures and H 2 partial pressures that would optimize the number densities of the two working units largely responsible for activation and passivation of surface dangling bonds (Ar+ and H respectively) in order to achieve acceptable rates of surface activation and passivation is obtained. It is found that higher operating pressures (150-200 mTorr) and lower H2 partial pressures (∼5%) are required in order to ensure high number densities of Ar+ and H species. This paper contributes to the improvement of the controllability and predictability of plasma-based nanoassembly processes.
Resumo:
A global, or averaged, model for complex low-pressure argon discharge plasmas containing dust grains is presented. The model consists of particle and power balance equations taking into account power loss on the dust grains and the discharge wall. The electron energy distribution is determined by a Boltzmann equation. The effects of the dust and the external conditions, such as the input power and neutral gas pressure, on the electron energy distribution, the electron temperature, the electron and ion number densities, and the dust charge are investigated. It is found that the dust subsystem can strongly affect the stationary state of the discharge by dynamically modifying the electron energy distribution, the electron temperature, the creation and loss of the plasma particles, as well as the power deposition. In particular, the power loss to the dust grains can take up a significant portion of the input power, often even exceeding the loss to the wall.
Resumo:
Transitions between the two discharge modes in a low-frequency (∼460 kHz) inductively coupled plasma sustained by an internal oscillating radio frequency (rf) current sheet are studied. The unidirectional rf current sheet is generated by an internal antenna comprising two orthogonal sets of synphased rf currents driven in alternately reconnected copper litz wires. It is shown that in the low-to-intermediate pressure range the plasma source can be operated in the electrostatic (E) and electromagnetic (H) discharge modes. The brightness of the E -mode argon plasma glow is found remarkably higher than in inductively coupled plasmas with external flat spiral "pancake" coils. The cyclic variations of the input rf power result in pronounced hysteretic variations of the optical emission intensity and main circuit parameters of the plasma source. Under certain conditions, it appears possible to achieve a spontaneous E→H transition ("self-transition"). The observed phenomenon can be attributed to the thermal drift of the plasma parameters due to the overheating of the working gas. The discharge destabilizing factors due to the gas heating and step-wise ionization are also discussed. © 2005 American Vacuum Society.
Microwave plasma discharge produced and sustained by the surface wave propagating along a metal wire
Resumo:
A theoretical model of the plasma discharge in a metal cylinder pumped by an operating gas of an arbitrary nature is presented. The ionization is carried out by the surface wave (SW) propagating along a coaxial metal wire. The model includes the local dispersion relation, the energy balance equation, and the relation between the absorbed power per unit length and the local plasma density. Two typical regimes of the discharge are analyzed. In both regimes the axial and radial profiles of the plasma density of the electromagnetic field components and of the SW intensity are obtained. The possible use of the obtained results in plasma technology are discussed.
Resumo:
The structure of a microwave gas discharge produced and sustained by a surface wave (SW) propagating along a cylindrical metal antenna with a dielectric coating is studied. The SW that produces and sustains the microwave gas discharge propagates along an external magnetic field and has an eigenfrequency in the range between the electron cyclotron and electron plasma frequencies. The presence of a dielectric (vacuum) sheath region separating the antenna from the plasma is assumed. The spatial distributions of the produced plasma density, electromagnetic fields, energy flow density, phase velocity and reverse skin depth of the SW are obtained analytically and numerically.
Resumo:
OBJECTIVE: To explore how registered nurses (RNs) in the general ward perceive discharge processes and practices for patients recently discharged from the intensive care unit (ICU). BACKGROUND: Patients discharged from the ICU environment often require complicated and multifaceted care. The ward-based RN is at the forefront of the care of this fragile patient population, yet their views and perceptions have seldom been explored. DESIGN: A qualitative grounded theory design was used to guide focus group interviews with the RN participants. METHODS: Five semi-structured focus group interviews, including 27 RN participants, were conducted in an Australian metropolitan tertiary referral hospital in 2011. Data analyses of transcripts, field notes and memos used concurrent data generation, constant comparative analysis and theoretical sampling. RESULTS: Results yielded a core category of 'two worlds' stressing the disconnectedness between ICU and the ward setting. This category was divided into sub categories of 'communication disconnect' and 'remember the family'. Properties of 'what we say', 'what we write', 'transfer' and 'information needs' respectively were developed within those sub-categories. CONCLUSION: The discharge process for patients within the ICU setting is complicated and largely underappreciated. There are fundamental, misunderstood differences in prioritisation and care of patients between the areas, with a deep understanding of practice requirements of ward based RNs not being understood. The findings of this research may be used to facilitate inter departmental communications and progress practice development.
Resumo:
Objective: To formally evaluate the written discharge advice for people with mild traumatic brain injury (mTBI). Methods: Eleven publications met the inclusion criteria: (1) intended for adults; (2) ≤two A4 pages; (3) published in English; (4) freely accessible; and (5) currently used (or suitable for use) in Australian hospital emergency departments or similar settings. Two independent raters evaluated the content and style of each publication against established standards. The readability of the publication, the diagnostic term(s) contained in it and a modified Patient Literature Usefulness Index (mPLUI) were also evaluated. Results: The mean content score was 19.18 ± 8.53 (maximum = 31) and the mean style score was 6.8 ± 1.34 (maximum = 8). The mean Flesch-Kincaid reading ease score was 66.42 ± 4.3. The mean mPLUI score was 65.86 ± 14.97 (maximum = 100). Higher scores on these metrics indicate more desirable properties. Over 80% of the publications used mixed diagnostic terminology. One publication scored optimally on two of the four metrics and highly on the others. Discussion: The content, style, readability and usefulness of written mTBI discharge advice was highly variable. The provision of written information to patients with mTBI is advised, but this variability in materials highlights the need for evaluation before distribution. Areas are identified to guide the improvement of written mTBI discharge advice.
Resumo:
Objective To examine personal and social demographics, and rehabilitation discharge outcomes of dysvascular and non-vascular lower limb amputees. Methods In total, 425 lower limb amputation inpatient rehabilitation admissions (335 individuals) from 2005 to 2011 were examined. Admission and discharge descriptive statistics (frequency, percentages) were calculated and compared by aetiology. Results Participants were male (74%), aged 65 years (s.d. 14), born in Australia (72%), had predominantly dysvascular aetiology (80%) and a median length of stay 48 days (interquartile range (IQR): 25–76). Following amputation, 56% received prostheses for mobility, 21% (n = 89) changed residence and 28% (n = 116) required community services. Dysvascular amputees were older (mean 67 years, s.d. 12 vs 54 years, s.d. 16; P < 0.001) and recorded lower functional independence measure – motor scores at admission (z = 3.61, P < 0.001) and discharge (z = 4.52, P < 0.001). More nonvascular amputees worked before amputation (43% vs 11%; P < 0.001), were prescribed a prosthesis by discharge (73% vs 52%; P < 0.001) and had a shorter length of stay (7 days, 95% confidence interval: –3 to 17), although this was not statistically significant. Conclusions Differences exist in social and demographic outcomes between dysvascular and non-vascular lower limb amputees.