77 resultados para Sight-singing.
Resumo:
Purpose: To examine between eye differences in corneal higher order aberrations and topographical characteristics in a range of refractive error groups. Methods: One hundred and seventy subjects were recruited including; 50 emmetropic isometropes, 48 myopic isometropes (spherical equivalent anisometropia ≤ 0.75 D), 50 myopic anisometropes (spherical equivalent anisometropia ≥ 1.00 D) and 22 keratoconics. The corneal topography of each eye was captured using the E300 videokeratoscope (Medmont, Victoria, Australia) and analyzed using custom written software. All left eye data were rotated about the vertical midline to account for enantiomorphism. Corneal height data were used to calculate the corneal wavefront error using a ray tracing procedure and fit with Zernike polynomials (up to and including the eighth radial order). The wavefront was centred on the line of sight by using the pupil offset value from the pupil detection function in the videokeratoscope. Refractive power maps were analysed to assess corneal sphero-cylindrical power vectors. Differences between the more myopic (or more advanced eye for keratoconics) and the less myopic (advanced) eye were examined. Results: Over a 6 mm diameter, the cornea of the more myopic eye was significantly steeper (refractive power vector M) compared to the fellow eye in both anisometropes (0.10 ± 0.27 D steeper, p = 0.01) and keratoconics (2.54 ± 2.32 D steeper, p < 0.001) while no significant interocular difference was observed for isometropic emmetropes (-0.03 ± 0.32 D) or isometropic myopes (0.02 ± 0.30 D) (both p > 0.05). In keratoconic eyes, the between eye difference in corneal refractive power was greatest inferiorly (associated with cone location). Similarly, in myopic anisometropes, the more myopic eye displayed a central region of significant inferior corneal steepening (0.15 ± 0.42 D steeper) relative to the fellow eye (p = 0.01). Significant interocular differences in higher order aberrations were only observed in the keratoconic group for; vertical trefoil C(3,-3), horizontal coma C(3,1) secondary astigmatism along 45 C(4, -2) (p < 0.05) and vertical coma C(3,-1) (p < 0.001). The interocular difference in vertical pupil decentration (relative to the corneal vertex normal) increased with between eye asymmetry in refraction (isometropia 0.00 ± 0.09, anisometropia 0.03 ± 0.15 and keratoconus 0.08 ± 0.16 mm) as did the interocular difference in corneal vertical coma C (3,-1) (isometropia -0.006 ± 0.142, anisometropia -0.037 ± 0.195 and keratoconus -1.243 ± 0.936 μm) but only reached statistical significance for pair-wise comparisons between the isometropic and keratoconic groups. Conclusions: There is a high degree of corneal symmetry between the fellow eyes of myopic and emmetropic isometropes. Interocular differences in corneal topography and higher order aberrations are more apparent in myopic anisometropes and keratoconics due to regional (primarily inferior) differences in topography and between eye differences in vertical pupil decentration relative to the corneal vertex normal. Interocular asymmetries in corneal optics appear to be associated with anisometropic refractive development.
Resumo:
A major challenge for robot localization and mapping systems is maintaining reliable operation in a changing environment. Vision-based systems in particular are susceptible to changes in illumination and weather, and the same location at another time of day may appear radically different to a system using a feature-based visual localization system. One approach for mapping changing environments is to create and maintain maps that contain multiple representations of each physical location in a topological framework or manifold. However, this requires the system to be able to correctly link two or more appearance representations to the same spatial location, even though the representations may appear quite dissimilar. This paper proposes a method of linking visual representations from the same location without requiring a visual match, thereby allowing vision-based localization systems to create multiple appearance representations of physical locations. The most likely position on the robot path is determined using particle filter methods based on dead reckoning data and recent visual loop closures. In order to avoid erroneous loop closures, the odometry-based inferences are only accepted when the inferred path's end point is confirmed as correct by the visual matching system. Algorithm performance is demonstrated using an indoor robot dataset and a large outdoor camera dataset.
Resumo:
In this paper we present a method for autonomously tuning the threshold between learning and recognizing a place in the world, based on both how the rodent brain is thought to process and calibrate multisensory data and the pivoting movement behaviour that rodents perform in doing so. The approach makes no assumptions about the number and type of sensors, the robot platform, or the environment, relying only on the ability of a robot to perform two revolutions on the spot. In addition, it self-assesses the quality of the tuning process in order to identify situations in which tuning may have failed. We demonstrate the autonomous movement-driven threshold tuning on a Pioneer 3DX robot in eight locations spread over an office environment and a building car park, and then evaluate the mapping capability of the system on journeys through these environments. The system is able to pick a place recognition threshold that enables successful environment mapping in six of the eight locations while also autonomously flagging the tuning failure in the remaining two locations. We discuss how the method, in combination with parallel work on autonomous weighting of individual sensors, moves the parameter dependent RatSLAM system significantly closer to sensor, platform and environment agnostic operation.
Resumo:
In outdoor environments shadows are common. These typically strong visual features cause considerable change in the appearance of a place, and therefore confound vision-based localisation approaches. In this paper we describe how to convert a colour image of the scene to a greyscale invariant image where pixel values are a function of underlying material property not lighting. We summarise the theory of shadow invariant images and discuss the modelling and calibration issues which are important for non-ideal off-the-shelf colour cameras. We evaluate the technique with a commonly used robotic camera and an autonomous car operating in an outdoor environment, and show that it can outperform the use of ordinary greyscale images for the task of visual localisation.
Resumo:
Currently, the GNSS computing modes are of two classes: network-based data processing and user receiver-based processing. A GNSS reference receiver station essentially contributes raw measurement data in either the RINEX file format or as real-time data streams in the RTCM format. Very little computation is carried out by the reference station. The existing network-based processing modes, regardless of whether they are executed in real-time or post-processed modes, are centralised or sequential. This paper describes a distributed GNSS computing framework that incorporates three GNSS modes: reference station-based, user receiver-based and network-based data processing. Raw data streams from each GNSS reference receiver station are processed in a distributed manner, i.e., either at the station itself or at a hosting data server/processor, to generate station-based solutions, or reference receiver-specific parameters. These may include precise receiver clock, zenith tropospheric delay, differential code biases, ambiguity parameters, ionospheric delays, as well as line-of-sight information such as azimuth and elevation angles. Covariance information for estimated parameters may also be optionally provided. In such a mode the nearby precise point positioning (PPP) or real-time kinematic (RTK) users can directly use the corrections from all or some of the stations for real-time precise positioning via a data server. At the user receiver, PPP and RTK techniques are unified under the same observation models, and the distinction is how the user receiver software deals with corrections from the reference station solutions and the ambiguity estimation in the observation equations. Numerical tests demonstrate good convergence behaviour for differential code bias and ambiguity estimates derived individually with single reference stations. With station-based solutions from three reference stations within distances of 22–103 km the user receiver positioning results, with various schemes, show an accuracy improvement of the proposed station-augmented PPP and ambiguity-fixed PPP solutions with respect to the standard float PPP solutions without station augmentation and ambiguity resolutions. Overall, the proposed reference station-based GNSS computing mode can support PPP and RTK positioning services as a simpler alternative to the existing network-based RTK or regionally augmented PPP systems.
Resumo:
In this research paper, we study a simple programming problem that only requires knowledge of variables and assignment statements, and yet we found that some early novice programmers had difficulty solving the problem. We also present data from think aloud studies which demonstrate the nature of those difficulties. We interpret our data within a neo-Piagetian framework which describes cognitive developmental stages through which students pass as they learn to program. We describe in detail think aloud sessions with novices who reason at the neo-Piagetian preoperational level. Those students exhibit two problems. First, they focus on very small parts of the code and lose sight of the "big picture". Second, they are prone to focus on superficial aspects of the task that are not functionally central to the solution. It is not until the transition into the concrete operational stage that decentration of focus occurs, and they have the cognitive ability to reason about abstract quantities that are conserved, and are equipped to adapt skills to closely related tasks. Our results, and the neo-Piagetian framework on which they are based, suggest that changes are necessary in teaching practice to better support novices who have not reached the concrete operational stage.
Resumo:
Contact lenses are a successful and popular means to correct refractive error and are worn by just under 700,000 Australians1 and approximately 125 million people worldwide. The most serious complication of contact lens wear is microbial keratitis, a potentially sight-threatening corneal infection most often caused by bacteria. Gram-negative bacteria, in particular pseudomonas species, account for the majority of severe bacterial infections. Pathogens such as fungi or amoebae, which feature less often, are associated with significant morbidity. These unusual pathogens have come into the spotlight in recent times with an apparent association with specific lens cleaning solutions...
Resumo:
It is well recognized that many scientifically interesting sites on Mars are located in rough terrains. Therefore, to enable safe autonomous operation of a planetary rover during exploration, the ability to accurately estimate terrain traversability is critical. In particular, this estimate needs to account for terrain deformation, which significantly affects the vehicle attitude and configuration. This paper presents an approach to estimate vehicle configuration, as a measure of traversability, in deformable terrain by learning the correlation between exteroceptive and proprioceptive information in experiments. We first perform traversability estimation with rigid terrain assumptions, then correlate the output with experienced vehicle configuration and terrain deformation using a multi-task Gaussian Process (GP) framework. Experimental validation of the proposed approach was performed on a prototype planetary rover and the vehicle attitude and configuration estimate was compared with state-of-the-art techniques. We demonstrate the ability of the approach to accurately estimate traversability with uncertainty in deformable terrain.
Resumo:
Operating in vegetated environments is a major challenge for autonomous robots. Obstacle detection based only on geometric features causes the robot to consider foliage, for example, small grass tussocks that could be easily driven through, as obstacles. Classifying vegetation does not solve this problem since there might be an obstacle hidden behind the vegetation. In addition, dense vegetation typically needs to be considered as an obstacle. This paper addresses this problem by augmenting probabilistic traversability map constructed from laser data with ultra-wideband radar measurements. An adaptive detection threshold and a probabilistic sensor model are developed to convert the radar data to occupancy probabilities. The resulting map captures the fine resolution of the laser map but clears areas from the traversability map that are induced by obstacle-free foliage. Experimental results validate that this method is able to improve the accuracy of traversability maps in vegetated environments.
Resumo:
This article aims to discuss the notion of moral progress in the theory of recognition. It argues that Axel Honneth's program offers sophisticated theoretical guidance to observe and critically interpret emancipatory projects in contemporary politics based on ideas of individuality and social inclusiveness. Using a case study – the investigation, through frame analysis, of transformations in the portrayal of people with impairment as well as in public discourses on the issue of disability in major Brazilian news media from 1960 to 2008 – this article addresses three controversies: the notion of progress as a directional process; the problem of moral disagreement and conflict of interest in struggles for recognition; and the processes of social learning. By articulating empirically based arguments and Honneth's normative discussions, this study concludes that one can talk about moral progress without losing sight of value pluralism and conflict of interest.
Resumo:
A SINGLE document was all it took to illuminate a dark secret in the Church of England. The two-page child protection report, unearthed by police in the archives of the diocese of Manchester, was proof, at last, that a former cathedral choirboy -- alleging years of sexual abuse by one of Britain's most senior clergyman -- was not alone. There was another boy. Also a solo soprano, on the other side of the world, who was singing from the same hymn sheet about The Very Reverend Robert Waddington. "There had been a previous referral about sexual impropriety some time ago from Australia, where RW had been the headmaster at a school. An ex-pupil had made a complaint to the Bishop of (north) Queensland who had relayed it to the Archbishop (of York)," the 2003 report says. Eli Ward's family had prompted the secret report when they told church officials, without Ward's knowledge, of the alleged abuse he suffered in the mid-1980s.
Resumo:
IT was in the magnificent Manchester Cathedral that Eli Ward's pure soprano attracted the attention of the new dean, the Reverend Robert Waddington. When Waddington called for volunteers to help him polish the gold leaf on the altar railings, several choirboys came forward. Among them was Eli, a working-class 11-year-old from a council estate, who loved singing in the choir and was happy to help...
Resumo:
‘Dark Cartographies’ is a slowly evolving meditation upon seasonal change, life after light and the occluding shadows of human influence. Through creating experiences of the many ‘times of a night’ the work allows participants to experience deep engagement with rich spectras of hidden place and sound. By amplifying and shining light upon a myriad of lives lived in blackness, ‘Dark Cartographies’ tempts us to re-understand seasonal change as actively-embodied temporality, inflected by our climate-changing disturbances. ‘Dark Cartographies’ uses custom interactive systems, illusionary techniques and real time spatial audio that draw upon a rich array of media, including seasonal, nocturnal field recordings sourced in the Far North Queensland region and detailed observations of foliage & flowering phases. By drawing inspiration from the subtle transitions between what Europeans named ‘Summer’ and ‘Autumn’, and by including the body and its temporal disturbances within the work, ‘Dark Cartographies’ creates compellingly immersive environments that wrap us in atmospheres beyond sight and hearing. ‘Dark Cartographies’ is a dynamic new installation directed & choreographed by environmental cycles; alluding to a new framework for making works that we call ‘Seasonal’. This powerful, responsive & experiential work draws attention to that which will disappear when biodiverse worlds have descended into an era of permanent darkness – an ‘extinction of human experience’. By tapping into the deeply interlocking seasonal cycles of environments that are themselves intimately linked with social, geographical & political concerns, participating audiences are therefore challenged to see the night, their locality & ecologies in new ways through extending their personal limits of perception, imagery & comprehension.
Resumo:
The Australian Civil Aviation Safety Authority (CASA) currently lists more than 100 separate entities or organisations which maintain a UAS Operator Certificate (UOC) [1]. Approved operations are overwhelmingly a permutation of aerial photography, surveillance, survey or spotting and predominantly, are restricted to Visual Line of Sight (VLOS) operations, below 400 feet, and not within 3 NM of an aerodrome. However, demand is increasing for a Remote Piloted Aerial System (RPAS) regulatory regime which facilitates more expansive operations, in particular unsegregated, Beyond Visual Line of Sight (BVLOS) operations. Despite this demand, there is national and international apprehension regarding the necessary levels of airworthiness and operational regulation required to maintain safety and minimise the risk associated with unsegregated operations. Fundamental to addressing these legitimate concerns will be the mechanisms that underpin safe separation and collision avoidance. Whilst a large body of research has been dedicated to investigating on-board, Sense and Avoid (SAA) technology necessary to meet this challenge, this paper focuses on the contribution of the NAS to separation assurance, and how it will support, as well as complicate RPAS integration. The paper collates and presents key, but historically disparate, threads of Australian RPAS and NAS related information, and distils it with a filter focused on minimising RPAS collision risk. Our ongoing effort is motivated by the need to better understand the separation assurance contribution provided by the NAS layers, in the first instance, and subsequently employ this information to identify scenarios where the coincident collision risk is demonstrably low, providing legitimate substantiation for concessions on equipage and airworthiness standards.
Resumo:
In recent years air pollution has been referred to as an ‘invisible killer’, and ‘an invisible health crisis’ (European Respiratory Society 2012). As other chapters in this collection have argued, the invisibility of crime is manifested through various lenses: lack of knowledge, lack of political and media attention, an absence of policing and regulatory focus, and an unwitting and ill-informed public. All such arguments pertain to air pollution; however, toxic emissions are also literally invisible from sight and consciousness, as are the associated consequences.