57 resultados para SOUTH AMERICAN FRUIT FLY
Resumo:
With the introduction of relaxed-clock molecular dating methods, the role of fossil calibration has expanded from providing a timescale, to also informing the models for molecular rate variation across the phylogeny. Here I suggest fossil calibration bounds for four mammal clades, Monotremata (platypus and echidnas), Macropodoidea (kangaroos and potoroos), Caviomorpha-Phiomorpha (South American and African hystricognath rodents), and Chiroptera (bats). In each case I consider sources of uncertainty in the fossil record and provide a molecular dating analysis to examine how the suggested calibration priors are further informed by other mammal fossil calibrations and molecular data.
Resumo:
The Trans-Pacific Partnership (TPP) is a sweeping, plurilateral free-trade agreement spanning the Pacific Rim.The ongoing, secretive treaty negotiations involve Australia and New Zealand; countries from South East Asia such as Brunei Darussalam, Malaysia, Singapore and Vietnam; the South American nations of Peru and Chile; and the members of the 1994 North American Free Trade Agreement, Canada, Mexico and the United States. There has also been some discussion as to whether Japan should be included in the negotiations.
Resumo:
The invasive fruit fly, Bactrocera invadens Drew, Tsuruta & White, is a highly polyphagous fruit pest that occurs predominantly in Africa yet has its origins in the Indian subcontinent. It is extremely morphologically and genetically similar to the Oriental fruit fly, Bactrocera dorsalis (Hendel); as such the specific relationship between these two species is unresolved. We assessed prezygotic compatibility between B. dorsalis and B. invadens using standardized field cage mating tests, which have proven effectiveness in tephritid cryptic species studies. These tests were followed by an assessment of postzygotic compatibility by examining egg viability, larval and pupal survival, and sex ratios of offspring produced from parental and subsequent F1 crosses to examine for hybrid breakdown as predicted under a two-species hypothesis. B. dorsalis was sourced from two countries (Pakistan and China), and each population was compared with B. invadens from its type locality of Kenya. B. invadens mated randomly with B. dorsalis from both localities, and there were generally high levels of hybrid viability and survival resulting from parental and F1 crosses. Furthermore, all but one hybrid cross resulted in equal sex ratios, with the single deviation in favor of males and contrary to expectations under Haldane's rule. These data support the hypothesis that B. dorsalis and B. invadens represent the same biological species, an outcome that poses significant implications for pest management and international trade for sub-Saharan Africa.
Resumo:
Poisoned protein baits comprise a recognized method for controlling tephritid fruit flies in the form of a ‘lure-and-kill’ technique. However, little is known about how a fly's internal protein and carbohydrate levels (i.e. nutritional status) might influence the efficacy of this control. In the present study, the relationships between the internal levels of protein (as measured by total body nitrogen) and carbohydrate (as measured by total body carbon) of the fruit fly Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) are investigated, as well as its foraging behaviours in response to protein, fruit and cue-lure (a male-specific attractant) baits. Small cage behavioural experiments are conducted using flies from cultures of different nutritional status and wild flies sampled from the field during the fruiting cycle of a guava crop. For female flies, increasing total body nitrogen is correlated with decreased protein foraging and increased oviposition activity; increasing total body carbon levels generate the same behavioural changes except that the oviposition response is not significant. For males, there are no significant correlations between changes in total body nitrogen and total body carbon and protein or cue-lure foraging. For wild flies from the guava orchard, almost all of them are sexually mature when entering the crop and, over the entire season, total body nitrogen and total body carbon levels are such that protein hunger is unlikely for most flies. The results infer strongly that the requirements of wild, sexually mature flies for protein are minimal and that flies can readily gain sufficient nutrients from wild sources for their physiological needs. The results offer a mechanistic explanation for the poor response of male and mature female fruit flies to protein bait spray.
Resumo:
Males of some species included in the Bactrocera dorsalis complex are strongly attracted to methyl eugenol (ME) (1,2-dimethoxy-4-(2-propenyl) benzene), a natural compound occurring in a variety of plant species. ME feeding of males of the B. dorsalis complex is known to enhance their mating competitiveness. Within B. dorsalis, recent studies show that Asian and African populations of B. dorsalis are sexually compatible, while populations of B. dorsalis and Bactrocera carambolae are relatively incompatible. The objectives of this study were to examine whether ME feeding by males affects mating compatibility between Asian and African populations of B. dorsalis and ME feeding reduces male mating incompatibility between B. dorsalis (Asian population) and B. carambolae. The data confirmed that Asian and African populations of B. dorsalis are sexually compatible for mating and showed that ME feeding only increased the number of matings. Though ME feeding also increased the number of matings of B. dorsalis (Asian population) and B. carambolae males but the sexual incompatibility between both species was not reduced by treatment with ME. These results conform to the efforts resolving the biological species limits among B. dorsalis complex and have implications for fruit fly control programs in fields and horticultural trade.
Resumo:
Laboratory-reared insects are widely known to have significantly reduced genetic diversity in comparison to wild populations; however, subtle behavioural changes between laboratory-adapted and wild or ‘wildish’ (i.e., within one or very few generations of field collected material) populations are less well understood. Quantifying alterations in behaviour, particularly sexual, in laboratory-adapted insects is important for mass-reared insects for use in pest management strategies, especially those that have a sterile insect technique component. We report subtle changes in sexual behaviour between ‘wildish’ Bactrocera dorsalis flies (F1 and F2) from central and southern Thailand and the same colonies 12 months later when at six generations from wild. Mating compatibility tests were undertaken under standardised semi-natural conditions, with number of homo/heterotypic couples and mating location in field cages analysed via compatibility indices. Central and southern populations of B. dorsalis displayed positive assortative mating in the 2010 trials but mated randomly in the 2011 trials. ‘Wildish’ southern Thailand males mated significantly earlier than central Thailand males in 2010; this difference was considerably reduced in 2011, yet homotypic couples from southern Thailand still formed significantly earlier than all other couple combinations. There was no significant difference in couple location in 2010; however, couple location significantly differed among pair types in 2011 with those involving southern Thailand females occurring significantly more often on the tree relative to those with central Thailand females. Relative participation also changed with time, with more southern Thailand females forming couples relative to central Thailand females in 2010; this difference was considerably decreased by 2011. These results reveal how subtle changes in sexual behaviour, as driven by laboratory rearing conditions, may significantly influence mating behaviour between laboratory-adapted and recently colonised tephritid fruit flies over a relatively short period of time.
Resumo:
The effectiveness of any trapping system is highly dependent on the ability to accurately identify the specimens collected. For many fruit fly species, accurate identification (= diagnostics) using morphological or molecular techniques is relatively straightforward and poses few technical challenges. However, nearly all genera of pest tephritids also contain groups of species where single, stand-alone tools are not sufficient for accurate identification: such groups include the Bactrocera dorsalis complex, the Anastrepha fraterculus complex and the Ceratitis FAR complex. Misidentification of high-impact species from such groups can have dramatic consequences and negate the benefits of an otherwise effective trapping program. To help prevent such problems, this chapter defines what is meant by a species complex and describes in detail how the correct identification of species within a complex requires the use of an integrative taxonomic approach. Integrative taxonomy uses multiple, independent lines of evidence to delimit species boundaries, and the underpinnings of this approach from both the theoretical speciation literature and the systematics/taxonomy literature are described. The strength of the integrative approach lies in the explicit testing of hypotheses and the use of multiple, independent species delimitation tools. A case is made for a core set of species delimitation tools (pre- and post-zygotic compatibility tests, multi-locus phylogenetic analysis, chemoecological studies, and morphometric and geometric morphometric analyses) to be adopted as standards by tephritologists aiming to resolve economically important species complexes. In discussing the integrative approach, emphasis is placed on the subtle but important differences between integrative and iterative taxonomy. The chapter finishes with a case study that illustrates how iterative taxonomy applied to the B. dorsalis species complex led to incorrect taxonomic conclusions, which has had major implications for quarantine, trade, and horticultural pest management. In contrast, an integrative approach to the problem has resolved species limits in this taxonomically difficult group, meaning that robust diagnostics are now available.
Resumo:
An FAO/IAEA Co-ordinated Research Project (CRP) on “Resolution of Cryptic Species Complexes of Tephritid Pests to Overcome Constraints to SIT Application and International Trade” was conducted from 2010 to 2015. As captured in the CRP title, the objective was to undertake targeted research into the systematics and diagnostics of taxonomically challenging fruit fly groups of economic importance. The scientific output was the accurate alignment of biological species with taxonomic names; which led to the applied outcome of assisting FAO and IAEA Member States in overcoming technical constraints to the application of the Sterile Insect Technique (SIT) against pest fruit flies and the facilitation of international agricultural trade. Close to 50 researchers from over 20 countries participated in the CRP, using coordinated, multidisciplinary research to address, within an integrative taxonomic framework, cryptic species complexes of major tephritid pests. The following progress was made for the four complexes selected and studied: Anastrepha fraterculus complex – Eight morphotypes and their geographic and ecological distributions in Latin America were defined. The morphotypes can be considered as distinct biological species on the basis of differences in karyotype, sexual incompatibility, post-mating isolation, cuticular hydrocarbon, pheromone, and molecular analyses. Discriminative taxonomic tools using linear and geometric morphometrics of both adult and larval morphology were developed for this complex. Bactrocera dorsalis complex – Based on genetic, cytogenetic, pheromonal, morphometric, and behavioural data, which showed no or only minor variation between the Asian/African pest fruit flies Bactrocera dorsalis, B. papayae, B. philippinensis and B. invadens, the latter three species were synonymized with B. dorsalis. Of the five target pest taxa studied, only B. dorsalis and B. carambolae remain as scientifically valid names. Molecular and pheromone markers are now available to distinguish B. dorsalis from B. carambolae. Ceratitis FAR Complex (C. fasciventris, C. anonae, C. rosa) – Morphology, morphometry, genetic, genomic, pheromone, cuticular hydrocarbon, ecology, behaviour, and developmental physiology data provide evidence for the existence of five different entities within this fruit fly complex from the African region. These are currently recognised as Ceratitis anonae, C. fasciventris (F1 and F2), C. rosa and a new species related to C. rosa (R2). The biological limits within C. fasciventris (i.e. F1 and F2) are not fully resolved. Microsatellites markers and morphological identification tools for the adult males of the five different FAR entities were developed based on male leg structures. Zeugodacus cucurbitae (formerly Bactrocera (Zeugodacus) cucurbitae) – Genetic variability was studied among melon fly populations throughout its geographic range in Africa and the Asia/Pacific region and found to be limited. Cross-mating studies indicated no incompatibility or sexual isolation. Host preference and genetic studies showed no evidence for the existence of host races. It was concluded that the melon fly does not represent a cryptic species complex, neither with regard to geographic distribution nor to host range. Nevertheless, the higher taxonomic classification under which this species had been placed, by the time the CRP was started, was found to be paraphyletic; as a result the subgenus Zeugodacus was elevated to genus level.
Resumo:
Tephritid fruit flies (Diptera: Tephritidae) are considered by far the most important group of horticultural pests worldwide. Female fruit flies lay eggs directly into ripening fruit, where the maggots feed causing fruit loss. Each and every continent is plagued by a number of fruit fly pests, both indigenous as well as invasive ones, causing tremendous economic losses. In addition to the direct losses through damage, they can negatively impact commodity trade through restrictions to market access. The quarantine and regulatory controls put in place to manage them are expensive, while the on-farm control costs and loss of crop affect the general well-being of growers. These constraints can have huge implications on loss in revenues and limitations to developing fruit and vegetable-based agroindustries in developing, emergent and developed nations. Because fruit flies are a global problem, the study of their biology and management requires significant international attention to overcome the hurdles they pose. The Joint Food and Agriculture Organisation / International Atomic Energy Agency (FAO/IAEA) Programme on Nuclear Techniques in Food and Agriculture has been on the foreground in assisting Member States in developing and validating environment-friendly fruit fly suppression systems to support viable fresh fruit and vegetable production and export industries. Such international attention has resulted in the successful development and validation of a Sterile Insect Technique (SIT) package for the Mediterranean fruit fly. Although demands for R&D support with respect to Mediterranean fruit fly are diminishing due to successful integration of this package into sustainable control programmes against this pest in many countries, there were increasing demands from Member States in Africa, Asia and Latin America, to address other major fruit fly pests and a related, but sometimes neglected issue of tephritid species complexes of economic importance. Any research, whether it is basic or applied, requires a taxonomic framework that provides reliable and universally recognized entities and names. Among the currently recognized major fruit fly pests, there are groups of species whose morphology is very similar or identical, but biologically they are distinct species. As such, some insect populations that are grouped taxonomically within the same pest species, display different biological and genetic traits and show reproductive isolation which suggest that they are different species. On the other hand, different species may have been taxonomically described, but there may be doubt as to whether they actually represent distinct biological species or merely geographical variants of the same species. This uncertain taxonomic status has practical implications on the effective development and use of the SIT against such complexes, particularly at the time of determining which species to mass-rear, and significantly affects international movement of fruit and vegetables through the establishment of trade barriers to important agricultural commodities which are hosts to these pest tephritid species...
Resumo:
The informal taxon ‘genus Chile’ of Brundin, based solely on pupal exuviae of a podonomine Chironomidae, has remained inadequately known for half a century. New collections reveal life associations, and provide molecular data to hypothesise a precise phylogenetic placement in the austral Podonominae. A densely sampled molecular phylogeny based on two nuclear and one mitochondrial DNA markers shows ‘genus Chile’ to be the sister group to Podonomopsis Brundin, 1966. Within Podonomopsis a clade of South American species is sister to all Australian species. We discuss how to rank such a sister group taxon and treat ‘genus Chile’ as a new subgenus Araucanopsis, subg. nov. with the new species, Podonomopsis (Araucanopsis) avelasse, sp. nov. from Chile and Argentina as genotype of the monotypic subgenus. We describe P. (A.) avelasse in all stages and provide an expanded diagnosis and description of Podonomopsis to include Araucanopsis. A dated biogeographic hypothesis (chronogram) infers the most recent common ancestor (tmcra) of expanded Podonomopsis at 95 million years ago (Mya) (68–122 Mya 95% highest posterior density), ‘core’ Podonomopsis at 83 Mya (58–108) and Australian Podonomopsis at 65 Mya (44–87). All dates are before the South America–Australia geological separation through Antarctica, supporting previous conclusions that the taxon distribution is ‘Gondwanan’ in origin. Podonomopsis, even as expanded here, remains unknown from New Zealand or elsewhere on extant Zealandia.
Resumo:
There has been much controversy over the Trans-Pacific Partnership (TPP) – a plurilateral trade agreement involving a dozen nations from throughout the Pacific Rim – and its impact upon the environment, biodiversity, and climate change. The secretive treaty negotiations involve Australia and New Zealand; countries from South East Asia such as Brunei Darussalam, Malaysia, Singapore, Vietnam, and Japan; the South American nations of Peru and Chile; and the members of the 1994 North American Free Trade Agreement (NAFTA), Canada, Mexico and the United States. There was an agreement reached between the parties in October 2015. The participants asserted: ‘We expect this historic agreement to promote economic growth, support higher-paying jobs; enhance innovation, productivity and competitiveness; raise living standards; reduce poverty in our countries; and to promote transparency, good governance, and strong labor and environmental protections.’ The final texts of the agreement were published in November 2015. There has been discussion as to whether other countries – such as Indonesia, the Philippines, and South Korea – will join the deal. There has been much debate about the impact of this proposed treaty upon intellectual property, the environment, biodiversity and climate change. There have been similar concerns about the Trans-Atlantic Trade and Investment Partnership (TTIP) – a proposed trade agreement between the United States and the European Union. In 2011, the United States Trade Representative developed a Green Paper on trade, conservation, and the environment in the context of the TPP. In its rhetoric, the United States Trade Representative has maintained that it has been pushing for strong, enforceable environmental standards in the TPP. In a key statement in 2014, the United States Trade Representative Mike Froman insisted: ‘The United States’ position on the environment in the Trans-Pacific Partnership negotiations is this: environmental stewardship is a core American value, and we will insist on a robust, fully enforceable environment chapter in the TPP or we will not come to agreement.’ The United States Trade Representative maintained: ‘Our proposals in the TPP are centered around the enforcement of environmental laws, including those implementing multilateral environmental agreements (MEAs) in TPP partner countries, and also around trailblazing, first-ever conservation proposals that will raise standards across the region’. Moreover, the United States Trade Representative asserted: ‘Furthermore, our proposals would enhance international cooperation and create new opportunities for public participation in environmental governance and enforcement.’ The United States Trade Representative has provided this public outline of the Environment Chapter of the TPP: A meaningful outcome on environment will ensure that the agreement appropriately addresses important trade and environment challenges and enhances the mutual supportiveness of trade and environment. The Trans-Pacific Partnership countries share the view that the environment text should include effective provisions on trade-related issues that would help to reinforce environmental protection and are discussing an effective institutional arrangement to oversee implementation and a specific cooperation framework for addressing capacity building needs. They also are discussing proposals on new issues, such as marine fisheries and other conservation issues, biodiversity, invasive alien species, climate change, and environmental goods and services. Mark Linscott, an assistant Trade Representative testified: ‘An environment chapter in the TPP should strengthen country commitments to enforce their environmental laws and regulations, including in areas related to ocean and fisheries governance, through the effective enforcement obligation subject to dispute settlement.’ Inside US Trade has commented: ‘While not initially expected to be among the most difficult areas, the environment chapter has emerged as a formidable challenge, partly due to disagreement over the United States proposal to make environmental obligations binding under the TPP dispute settlement mechanism’. Joshua Meltzer from the Brookings Institute contended that the trade agreement could be a boon for the protection of the environment in the Pacific Rim: Whether it is depleting fisheries, declining biodiversity or reduced space in the atmosphere for Greenhouse Gas emissions, the underlying issue is resource scarcity. And in a world where an additional 3 billion people are expected to enter the middle class over the next 15 years, countries need to find new and creative ways to cooperate in order to satisfy the legitimate needs of their population for growth and opportunity while using resources in a manner that is sustainable for current and future generations. The TPP parties already represent a diverse range of developed and developing countries. Should the TPP become a free trade agreement of the Asia-Pacific region, it will include the main developed and developing countries and will be a strong basis for building a global consensus on these trade and environmental issues. The TPP has been promoted by its proponents as a boon to the environment. The United States Trade Representative has maintained that the TPP will protect the environment: ‘The United States’ position on the environment in the TPP negotiations is this: environmental stewardship is a core American value, and we will insist on a robust, fully enforceable environment chapter in the TPP or we will not come to agreement.’ The United States Trade Representative discussed ‘Trade for a Greener World’ on World Environment Day. Andrew Robb, at the time the Australian Trade and Investment Minister, vowed that the TPP will contain safeguards for the protection of the environment. In November 2015, after the release of the TPP text, Rohan Patel, the Special Assistant to the President and Deputy Director of Intergovernmental Affairs, sought to defend the environmental credentials of the TPP. He contended that the deal had been supported by the Nature Conservancy, the International Fund for Animal Welfare, the Joint Ocean Commission Initiative, the World Wildlife Fund, and World Animal Protection. The United States Congress, though, has been conflicted by the United States Trade Representative’s arguments about the TPP and the environment. In 2012, members of the United States Congress - including Senator Ron Wyden (D-OR), Olympia Snowe (R-ME), and John Kerry (D-MA) – wrote a letter, arguing that the trade agreement needs to provide strong protection for the environment: ‘We believe that a '21st century agreement' must have an environment chapter that guarantees ongoing sustainable trade and creates jobs, and this is what American businesses and consumers want and expect also.’ The group stressed that ‘A binding and enforceable TPP environment chapter that stands up for American interests is critical to our support of the TPP’. The Congressional leaders maintained: ‘We believe the 2007 bipartisan congressional consensus on environmental provisions included in recent trade agreements should serve as the framework for the environment chapter of the TPP.’ In 2013, senior members of the Democratic leadership expressed their opposition to granting President Barack Obama a fast-track authority in respect of the TPP House of Representatives Minority Leader Nancy Pelosi said: ‘No on fast-track – Camp-Baucus – out of the question.’ Senator Majority leader Harry Reid commented: ‘I’m against Fast-Track: Everyone would be well-advised to push this right now.’ Senator Elizabeth Warren has been particularly critical of the process and the substance of the negotiations in the TPP: From what I hear, Wall Street, pharmaceuticals, telecom, big polluters and outsourcers are all salivating at the chance to rig the deal in the upcoming trade talks. So the question is, Why are the trade talks secret? You’ll love this answer. Boy, the things you learn on Capitol Hill. I actually have had supporters of the deal say to me ‘They have to be secret, because if the American people knew what was actually in them, they would be opposed. Think about that. Real people, people whose jobs are at stake, small-business owners who don’t want to compete with overseas companies that dump their waste in rivers and hire workers for a dollar a day—those people, people without an army of lobbyists—they would be opposed. I believe if people across this country would be opposed to a particular trade agreement, then maybe that trade agreement should not happen. The Finance Committee in the United States Congress deliberated over the Trans-Pacific Partnership negotiations in 2014. The new chair Ron Wyden has argued that there needs to be greater transparency in trade. Nonetheless, he has mooted the possibility of a ‘smart-track’ to reconcile the competing demands of the Obama Administration, and United States Congress. Wyden insisted: ‘The new breed of trade challenges spawned over the last generation must be addressed in imaginative new policies and locked into enforceable, ambitious, job-generating trade agreements.’ He emphasized that such agreements ‘must reflect the need for a free and open Internet, strong labor rights and environmental protections.’ Elder Democrat Sander Levin warned that the TPP failed to provide proper protection for the environment: The TPP parties are considering a different structure to protect the environment than the one adopted in the May 10 Agreement, which directly incorporated seven multilateral environmental agreements into the text of past trade agreements. While the form is less important than the substance, the TPP must provide an overall level of environmental protection that upholds and builds upon the May 10 standard, including fully enforceable obligations. But many of our trading partners are actively seeking to weaken the text to the point of falling short of that standard, including on key issues like conservation. Nonetheless, 2015, President Barack Obama was able to secure the overall support of the United States Congress for his ‘fast-track’ authority. This was made possible by the Republicans and dissident Democrats. Notably, Oregon Senator Ron Wyden switched sides, and was transformed from a critic of the TPP to an apologist for the TPP. For their part, green political parties and civil society organisations have been concerned about the secretive nature of the negotiations; and the substantive implications of the treaty for the environment. Environmental groups and climate advocates have been sceptical of the environmental claims made by the White House for the TPP. The Green Party of Aotearoa New Zealand, the Australian Greens and the Green Party of Canada have released a joint declaration on the TPP observing: ‘More than just another trade agreement, the TPP provisions could hinder access to safe, affordable medicines, weaken local content rules for media, stifle high-tech innovation, and even restrict the ability of future governments to legislate for the good of public health and the environment’. In the United States, civil society groups such as the Sierra Club, Public Citizen, WWF, the Friends of the Earth, the Rainforest Action Network and 350.org have raised concerns about the TPP and the environment. Allison Chin, President of the Sierra Club, complained about the lack of transparency, due process, and public participation in the TPP talks: ‘This is a stealth affront to the principles of our democracy.’ Maude Barlow’s The Council of Canadians has also been concerned about the TPP and environmental justice. New Zealand Sustainability Council executive director Simon Terry said the agreement showed ‘minimal real gains for nature’. A number of organisations have joined a grand coalition of civil society organisations, which are opposed to the grant of a fast-track. On the 15th January 2013, WikiLeaks released the draft Environment Chapter of the TPP - along with a report by the Chairs of the Environmental Working Group. Julian Assange, WikiLeaks' publisher, stated: ‘Today's WikiLeaks release shows that the public sweetener in the TPP is just media sugar water.’ He observed: ‘The fabled TPP environmental chapter turns out to be a toothless public relations exercise with no enforcement mechanism.’ This article provides a critical examination of the draft Environment Chapter of the TPP. The overall argument of the article is that the Environment Chapter of the TPP is an exercise in greenwashing – it is a public relations exercise by the United States Trade Representative, rather than a substantive regime for the protection of the environment in the Pacific Rim. Greenwashing has long been a problem in commerce, in which companies making misleading and deceptive claims about the environment. In his 2012 book, Greenwash: Big Brands and Carbon Scams, Guy Pearse considers the rise of green marketing and greenwashing. Government greenwashing is also a significant issue. In his book Storms of My Grandchildren, the climate scientist James Hansen raises his concerns about government greenwashing. Such a problem is apparent with the TPP – in which there was a gap between the assertions of the United States Government, and the reality of the agreement. This article contends that the TPP fails to meet the expectations created by President Barack Obama, the White House, and the United States Trade Representative about the environmental value of the agreement. First, this piece considers the relationship of the TPP to multilateral environmental treaties. Second, it explores whether the provisions in respect of the environment are enforceable. Third, this article examines the treatment of trade and biodiversity in the TPP. Fourth, this study considers the question of marine capture fisheries. Fifth, there is an evaluation of the cursory text in the TPP on conservation. Sixth, the article considers trade in environmental services under the TPP. Seventh, this article highlights the tensions between the TPP and substantive international climate action. It is submitted that the TPP undermines effective and meaningful government action and regulation in respect of climate change. The conclusion also highlights that a number of other chapters of the TPP will impact upon the protection of the environment – including the Investment Chapter, the Intellectual Property Chapter, the Technical Barriers to Trade Chapter, and the text on public procurement.
Resumo:
Computational modelling of mechanisms underlying processes in the real world can be of great value in understanding complex biological behaviours. Uptake in general biology and ecology has been rapid. However, it often requires specific data sets that are overly costly in time and resources to collect. The aim of the current study was to test whether a generic behavioural ecology model constructed using published data could give realistic outputs for individual species. An individual-based model was developed using the Pattern-Oriented Modelling (POM) strategy and protocol, based on behavioural rules associated with insect movement choices. Frugivorous Tephritidae (fruit flies) were chosen because of economic significance in global agriculture and the multiple published data sets available for a range of species. The Queensland fruit fly (Qfly), Bactrocera tryoni, was identified as a suitable individual species for testing. Plant canopies with modified architecture were used to run predictive simulations. A field study was then conducted to validate our model predictions on how plant architecture affects fruit flies’ behaviours. Characteristics of plant architecture such as different shapes, e.g., closed-canopy and vase-shaped, affected fly movement patterns and time spent on host fruit. The number of visits to host fruit also differed between the edge and centre in closed-canopy plants. Compared to plant architecture, host fruit has less contribution to effects on flies’ movement patterns. The results from this model, combined with our field study and published empirical data suggest that placing fly traps in the upper canopy at the edge should work best. Such a modelling approach allows rapid testing of ideas about organismal interactions with environmental substrates in silico rather than in vivo, to generate new perspectives. Using published data provides a saving in time and resources. Adjustments for specific questions can be achieved by refinement of parameters based on targeted experiments.