92 resultados para SI(001)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor nanowires (NWs) show tremendous applications in micro/nano-electro-mechanical systems. In order to fulfill their promising applications, an understanding of the mechanical properties of NWs becomes increasingly important. Based on the large-scale molecular dynamics simulations, this work investigated the tensile properties of Si NWs with different faulted stacking layers. Different faulted stacking layers were introduced around the centre of the NW by the insertion or removal of certain stacking layers, inducing twins, intrinsic stacking fault, extrinsic stacking fault, and 9R crystal structure. Stress–strain curves obtained from the tensile deformation tests reveal that the presence of faulted stacking layers has induced a considerable decrease to the yield strength while only a minor decrease to Young's modulus. The brittle fracture phenomenon is observed for all tested NWs. In particular, the formation of a monatomic chain is observed for the perfect NW, which exists for a relatively wide strain range. For the defected NW, the monatomic chain appears and lasts shorter. Additionally, all defected NWs show a fracture area near the two ends, in contrast to the perfect NW whose fracture area is adjacent to the middle. This study provides a better understanding of the mechanical properties of Si NWs with the presence of different faulted stacking layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Faulted stacking layers are ubiquitously observed during the crystal growth of semiconducting nanowires (NWs). In this paper, we employ the reverse non-equilibrium molecular dynamics simulation to elucidate the effect of various faulted stacking layers on the thermal conductivity (TC) of silicon (Si) NWs. We find that the stacking faults can greatly reduce the TC of the Si NW. Among the different stacking faults that are parallel to the NW's axis, the 9R polytype structure, the intrinsic and extrinsic stacking faults (iSFs and eSFs) exert more pronounced effects in the reduction of TC than the twin boundary (TB). However, for the perpendicularly aligned faulted stacking layers, the eSFs and 9R polytype structures are observed to induce a larger reduction to the TC of the NW than the TB and iSFs. For all considered NWs, the TC does not show a strong relation with the increasing number of faulted stacking layers. Our studies suggest the possibility of tuning the thermal properties of Si NWs by altering the crystal structure via the different faulted stacking layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ideal coating materials for implants should be able to induce excellent osseointegration, which requires several important parameters, such as good bonding strength, limited inflammatory reaction, balanced osteoclastogenesis and osteogenesis, to gain well-functioning coated implants with long-term life span after implantation. Bioactive elements, like Sr, Mg and Si, have been found to play important roles in regulating the biological responses. It is of great interest to combine bioactive elements for developing bioactive coatings on Ti-6Al-4V orthopedic implants to elicit multidirectional effects on the osseointegration. In this study, Sr, Mg and Si-containing bioactive Sr2MgSi2O7 (SMS) ceramic coatings on Ti-6Al-4V were successfully prepared by plasma-spray coating method. The prepared SMS coatings have significantly higher bonding strength (~37MPa) than conventional pure hydroxyapatite (HA) coatings (mostly in the range of 15-25 MPa). It was also found that the prepared SMS coatings switch the macrophage phenotype into M2 extreme, inhibiting the inflammatory reaction via the inhibition of Wnt5A/Ca2+ and Toll-like receptor (TLR) pathways of macrophages. In addition, the osteoclastic activities were also inhibited by SMS coatings. The expression of osteoclastogenesis related genes (RANKL and MCSF) in bone marrow derived mesenchymal cells (BMSCs) with the involvement of macrophages was decreased, while OPG expression was enhanced on SMS coatings compared to HA coatings, indicating that SMS coatings also downregulated the osteoclastogenesis. However, the osteogenic differentiation of BMSCs with the involvement of macrophages was comparable between SMS and HA coatings. Therefore, the prepared SMS coatings showed multidirectional effects, such as improving bonding strength, reducing inflammatory reaction and downregulating osteoclastic activities, but maintaining a comparable osteogenesis, as compared with HA coatings. The combination of bioactive elements of Sr, Mg and Si into bioceramic coatings can be a promising method to develop bioactive implants with multifunctional properties for orthopaedic application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cation\[Si,C,O](+) has been generated by 1) the electron ionisation (EI) of tetramethoxysilane and 2) chemical ionisation (CI) of a mixture of silane and carbon monoxide. Collisional activation (CA) experiments performed for mass-selected \[Si,C,O](+), generated by using both methods, indicate that the structure is not inserted OSiC+; however, a definitive structural assignment as Si+-CO, Si+-OC or some cyclic variant is impossible based on these results alone. Neutralisation-reionisation (+NR+) experiments for EI-generated \[Si,C,O](+) reveal a small peak corresponding to SiC+, but no detectable SiO+ signal, and thus establishes the existence of the Si+-CO isomer. CCSD(T)//B3LYP calculations employing a triple-zeta basis set have been used to explore the doublet and quartet potential-energy surfaces of the cation, as well as some important neutral states The results suggest that both Si+-CO and Si+ - OC isomers are feasible; however, the global minimum is (2)Pi SiCO+. Isomeric (2)Pi SiOC+ is 12.1 kcal mol(-1) less stable than (2)Pi SiCO+, and all quartet isomers are much higher in energy. The corresponding neutrals Si-CO and Si-OC are also feasible, but the lowest energy Si - OC isomer ((3)A") is bound by only 1.5 kcal mol(-1). We attribute most, if nor all, of the recovery signal in the +NR' experiment to SiCO+ survivor ions. The nature of the bonding in the lowest energy isomers of Si+ -(CO,OC) is interpreted with the aid of natural bond order analyses, and the ground stale bonding of SiCO+ is discussed in relation to classical analogues such as metal carbonyls and ketenes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been a recent rapid expansion of the range of applications of low-temperature plasma processing in Si-based photovoltaic (PV) technologies. The desire to produce Si-based PV materials at an acceptable cost with consistent performance and reproducibility has stimulated a large number of major research and research infrastructure programs, and a rapidly increasing number of publications in the field of low-temperature plasma processing for Si photovoltaics. In this article, we introduce the low-temperature plasma sources for Si photovoltaic applications and discuss the effects of low-temperature plasma dissociation and deposition on the synthesis of Si-based thin films. We also examine the relevant growth mechanisms and plasma diagnostics, Si thin-film solar cells, Si heterojunction solar cells and silicon nitride materials for antireflection and surface passivation. Special attention is paid to the low-temperature plasma interactions with Si materials including hydrogen interaction, wafer cleaning, masked or mask-free surface texturization, the direct formation of p-n junction, and removal of phosphorus silicate glass or parasitic emitters. The chemical and physical interactions in such plasmas with Si surfaces are analyzed. Several examples of the plasma processes and techniques are selected to represent a variety of applications aimed at the improvement of Si-based solar cell performance. © 2014 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleation and growth of highly crystalline silicon nanoparticles in atmospheric-pressure low-temperature microplasmas at gas temperatures well below the Si crystallization threshold and within a short (100 μs) period of time are demonstrated and explained. The modeling reveals that collision-enhanced ion fluxes can effectively increase the heat flux on the nanoparticle surface and this heating is controlled by the ion density. It is shown that nanoparticles can be heated to temperatures above the crystallization threshold. These combined experimental and theoretical results confirm the effective heating and structure control of Si nanoparticles at atmospheric pressure and low gas temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Textured silicon surfaces are widely used in manufacturing of solar cells due to increasing the light absorption probability and also the antireflection properties. However, these Si surfaces have a high density of surface defects that need to be passivated. In this study, the effect of the microscopic surface texture on the plasma surface passivation of solar cells is investigated. The movement of 105 H+ ions in the texture-modified plasma sheath is studied by Monte Carlo numerical simulation. The hydrogen ions are driven by the combined electric field of the plasma sheath and the textured surface. The ion dynamics is simulated, and the relative ion distribution over the textured substrate is presented. This distribution can be used to interpret the quality of the Si dangling bonds saturation and consequently, the direct plasma surface passivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-temperature plasmas in direct contact with arbitrary, written linear features on a Si wafer enable catalyst-free integration of carbon nanotubes into a Si-based nanodevice platform and in situ resolution of individual nucleation events. The graded nanotube arrays show reliable, reproducible, and competitive performance in electron field emission and biosensing nanodevices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multiscale, multiphase thermokinetic model is used to show the effective control of the growth orientation of thin Si NWs for nanoelectronic devices enabled by nanoscale plasma chemistry. It is shown that very thin Si NWs with [110] growth direction can nucleate at much lower process temperatures and pressures compared to thermal chemical vapor deposition where [111]-directed Si NWs are predominantly grown. These findings explain a host of experimental results and offer the possibility of energy- and matter-efficient, size- and orientation-controlled growth of [110] Si NWs for next-generation nanodevices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simple, rapid, catalyst-free synthesis of complex patterns of long, vertically aligned multiwalled carbon nanotubes, strictly confined within mechanically-written features on a Si(1 0 0) surface is reported. It is shown that dense arrays of the nanotubes can nucleate and fully fill the features when the low-temperature microwave plasma is in a direct contact with the surface. This eliminates additional nanofabrication steps and inevitable contact losses in applications associated with carbon nanotube patterns. Using metal catalyst has long been considered essential for the nucleation and growth of surface-supported carbon nanotubes (CNTs) [1] and [2]. Only very recently, the possibility of CNT growth using non-metallic (e.g., oxide [3] and SiC [4]) catalysts or artificially created carbon-enriched surface layers [5] has been demonstrated. However, successful integration of carbon nanostructures into Si-based nanodevice platforms requires catalyst-free growth, as the catalyst nanoparticles introduce contact losses, and their catalytic activity is very difficult to control during the growth [6]. Furthermore, in many applications in microfluidics, biological and molecular filters, electronic, sensor, and energy conversion nanodevices, the CNTs need to be arranged in specific complex patterns [7] and [8]. These patterns need to contain the basic features (e.g., lines and dots) written using simple procedures and fully filled with dense arrays of high-quality, straight, yet separated nanotubes. In this paper, we report on a completely metal or oxide catalyst-free plasma-based approach for the direct and rapid growth of dense arrays of long vertically-aligned multi-walled carbon nanotubes arranged into complex patterns made of various combinations of basic features on a Si(1 0 0) surface written using simple mechanical techniques. The process was conducted in a plasma environment [9] and [10] produced by a microwave discharge which typically generates the low-temperature plasmas at the discharge power below 1 kW [11]. Our process starts from mechanical writing (scribing) a pattern of arbitrary features on pre-treated Si(1 0 0) wafers. Before and after the mechanical feature writing, the Si(1 0 0) substrates were cleaned in an aqueous solution of hydrofluoric acid for 2 min to remove any possible contaminations (such as oil traces which could decompose to free carbon at elevated temperatures) from the substrate surface. A piece of another silicon wafer cleaned in the same way as the substrate, or a diamond scriber were used to produce the growth patterns by a simple arbitrary mechanical writing, i.e., by making linear scratches or dot punctures on the Si wafer surface. The results were the same in both cases, i.e., when scratching the surface by Si or a diamond scriber. The procedure for preparation of the substrates did not involve any possibility of external metallic contaminations on the substrate surface. After the preparation, the substrates were loaded into an ASTeX model 5200 chemical vapour deposition (CVD) reactor, which was very carefully conditioned to remove any residue contamination. The samples were heated to at least 800 °C to remove any oxide that could have formed during the sample loading [12]. After loading the substrates into the reactor chamber, N2 gas was supplied into the chamber at the pressure of 7 Torr to ignite and sustain the discharge at the total power of 200 W. Then, a mixture of CH4 and 60% of N2 gases were supplied at 20 Torr, and the discharge power was increased to 700 W (power density of approximately 1.49 W/cm3). During the process, the microwave plasma was in a direct contact with the substrate. During the plasma exposure, no external heating source was used, and the substrate temperature (∼850 °C) was maintained merely due to the plasma heating. The features were exposed to a microwave plasma for 3–5 min. A photograph of the reactor and the plasma discharge is shown in Fig. 1a and b.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of clearly separated vertical graphenenanosheets on silicon nanograss support is demonstrated. The plasma-enabled, two-stage mask-free process produced self-organized vertical graphenes of a few carbon layers (as confirmed by advanced microanalysis), prominently oriented in the substrate center–substrate edge direction. It is shown that the width of the alignment zone depends on the substrate conductivity, and thus the electric field in the vicinity of the growth surface is responsible for the graphene alignment. This finding is confirmed by the Monte Carlo simulations of the ion flux distribution in the silicon nanograss pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An advanced combination of numerical models, including plasma sheath, ion- and radical-induced species creation and plasma heating effects on the surface and within a Au catalyst nanoparticle, is used to describe the catalyzed growth of Si nanowires in the sheath of a low-temperature and low-pressure plasma. These models have been used to explain the higher nanowire growth rates, low-energy barriers, much thinner Si nanowire nucleation and the less effective Gibbs–Thomson effect in reactive plasma processes, compared with those of neutral gas thermal processes. The effects of variation in the plasma sheath parameters and substrate potential on Si nanowire nucleation and growth have also been investigated. It is shown that increasing the plasma-related effects leads to decreases in the nucleation energy barrier and the critical nanoparticle radius, with the Gibbs–Thomson effect diminished, even at low temperatures. The results obtained are consistent with available experimental results and open a path toward the energy- and matter-efficient nucleation and growth of a broad range of one-dimensional quantum structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of the combined experimental and numerical study suggest that nonequilibrium plasma-driven self-organization leads to better size and positional uniformity of nickel nanodot arrays on a Si(100) surface compared with neutral gas-based processes under similar conditions. This phenomenon is explained by introducing the absorption zone patterns, whose areas relative to the small nanodot sizes become larger when the surface is charged. Our results suggest that strongly nonequilibrium and higher-complexity plasma systems can be used to improve ordering and size uniformity in nanodot arrays of various materials, a common and seemingly irresolvable problem in self-organized systems of small nanoparticles. © 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanophase nc-Si/a-SiC films that contain Si quantum dots (QDs) embedded in an amorphous SiC matrix were deposited on single-crystal silicon substrates using inductively coupled plasma-assisted chemical vapor deposition from the reactive silane and methane precursor gases diluted with hydrogen at a substrate temperature of 200 °C. The effect of the hydrogen dilution ratio X (X is defined as the flow rate ratio of hydrogen-to-silane plus methane gases), ranging from 0 to 10.0, on the morphological, structural, and compositional properties of the deposited films, is extensively and systematically studied by scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, Fourier-transform infrared absorption spectroscopy, and X-ray photoelectron spectroscopy. Effective nanophase segregation at a low hydrogen dilution ratio of 4.0 leads to the formation of highly uniform Si QDs embedded in the amorphous SiC matrix. It is also shown that with the increase of X, the crystallinity degree and the crystallite size increase while the carbon content and the growth rate decrease. The obtained experimental results are explained in terms of the effect of hydrogen dilution on the nucleation and growth processes of the Si QDs in the high-density plasmas. These results are highly relevant to the development of next-generation photovoltaic solar cells, light-emitting diodes, thin-film transistors, and other applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple, effective and innovative approach based on low-pressure, thermally nonequilibrium, high-density inductively coupled plasmas is proposed to rapidly synthesize Si quantum dots (QDs) embedded in an amorphous SiC (a-SiC) matrix at a low substrate temperature and without any commonly used hydrogen dilution. The experimental results clearly demonstrate that uniform crystalline Si QDs with a size of 3-4 nm embedded in the silicon-rich (carbon content up to 10.7at.%) a-SiC matrix can be formed from the reactive mixture of silane and methane gases, with high growth rates of ∼1.27-2.34 nm s-1 and at a low substrate temperature of 200 °C. The achievement of the high-rate growth of Si QDs embedded in the a-SiC without any commonly used hydrogen dilution is discussed based on the unique properties of the inductively coupled plasma-based process. This work is particularly important for the development of the all-Si tandem cell-based third generation photovoltaic solar cells.