137 resultados para Russian periodicals
Resumo:
‘Wearable technology’, or the use of specialist technology in garments, is promoted by the electronics industry as the next frontier of fashion. However the story of wearable technology’s relationship with fashion begins neither with the development of miniaturised computers in the 1970s nor with sophisticated ‘smart textiles’ of the twenty-first century, despite what much of the rhetoric suggests. This study examines wearable technology against a longer history of fashion, highlighted by the influential techno-sartorial experiments of a group of early twentieth century avant-gardes including Italian Futurists Giacomo Balla and F.T. Marinetti, Russian Constructivists Varvara Stepanova and Liubov Popova, and Paris-based Cubist, Sonia Delaunay. Through the interdisciplinary framework of fashion studies, the thesis provides a fuller picture of wearable technology framed by the idea of utopia. Using comparative analysis, and applying the theoretical formulations of Fredric Jameson, Louis Marin and Michael Carter, the thesis traces the appearance of three techno-utopian themes from their origins in the machine age experiments of Balla, Marinetti, Stepanova, Popova and Delaunay to their twenty-first century reappearance in a dozen wearable technology projects. By exploring the central thesis that contemporary wearable technology resurrects the techno-utopian ideas and expressions of the early twentieth century, the study concludes that the abiding utopian impetus to embed technology in the aesthetics (prints, silhouettes, and fabrication) and functionality of fashion is to unify subject, society and environment under a totalising technological order.
Resumo:
An extended theory of planned behavior (TPB) was used to predict young people’s intentions to donate money to charities in the future. Students (N = 210; 18-24 years) completed a questionnaire assessing their attitude, subjective norm, perceived behavioral control [PBC], moral obligation, past behavior and intentions toward donating money. Regression analyses revealed the extended TPB explained 61% of the variance in intentions to donate money. Attitude, PBC, moral norm, and past behavior predicted intentions, representing future targets for charitable giving interventions.
Resumo:
The regulatory pathways involved in maintaining the pluripotency of embryonic stem cells are partially known, whereas the regulatory pathways governing adult stem cells and their "stem-ness" are characterized to an even lesser extent. We, therefore, screened the transcriptome profiles of 20 osteogenically induced adult human adipose-derived stem cell (ADSC) populations and investigated for putative transcription factors that could regulate the osteogenic differentiation of these ADSC. We studied a subgroup of donors' samples that had a disparate osteogenic response transcriptome from that of induced human fetal osteoblasts and the rest of the induced human ADSC samples. From our statistical analysis, we found activating transcription factor 5 (ATF5) to be significantly and consistently down-regulated in a randomized time-course study of osteogenically differentiated adipose-derived stem cells from human donor samples. Knockdown of ATF5 with siRNA showed an increased sensitivity to osteogenic induction. This evidence suggests a role for ATF5 in the regulation of osteogenic differentiation in adipose-derived stem cells. To our knowledge, this is the first report that indicates a novel role of transcription factors in regulating osteogenic differentiation in adult or tissue specific stem cells. © 2012 Wiley Periodicals, Inc.
Resumo:
The study of biologically active peptides is critical to the understanding of physiological pathways, especially those involved in the development of disease. Historically, the measurement of biologically active endogenous peptides has been undertaken by radioimmunoassay, a highly sensitive and robust technique that permits the detection of physiological concentrations in different biofluid and tissue extracts. Over recent years, a range of mass spectrometric approaches have been applied to peptide quantification with limited degrees of success. Neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP) belong to the NPY family exhibiting regulatory effects on appetite and feeding behavior. The physiological significance of these peptides depends on their molecular forms and in vivo concentrations systemically and at local sites within tissues. In this report, we describe an approach for quantification of individual peptides within mixtures using high-performance liquid chromatography electrospray ionization tandem mass spectrometry analysis of the NPY family peptides. Aspects of quantification including sample preparation, the use of matrix-matched calibration curves, and internal standards will be discussed. This method for the simultaneous determination of NPY, PYY, and PP was accurate and reproducible but lacks the sensitivity required for measurement of their endogenous concentration in plasma. The advantages of mass spectrometric quantification will be discussed alongside the current obstacles and challenges. © 2012 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 98: 357–366, 2012.
Resumo:
Virtual Reality (VR) techniques are increasingly being used for education about and in the treatment of certain types of mental illness. Research indicates that VR is delivering on its promised potential to provide enhanced training and treatment outcomes through incorporation of this high-end technology. Schizophrenia is a mental disorder affecting 1-2% of the population, and it is estimated 12-16% of hospital beds in Australia are occupied by patients with psychosis. Tragically, there is also an increased risk of suicide associated with this diagnosis. A significant research project being undertaken across the University of Queensland faculties of Health Sciences and EPSA (Engineering, Physical Sciences and Architecture) has constructed a number of virtual environments that reproduce the phenomena experienced by patients who have psychosis. Symptoms of psychosis include delusions, hallucinations and thought disorder. The VR environment will allow behavioral, exposure therapies to be conducted with exactly controlled exposure stimuli and an expected reduction in risk of harm. This paper reports on the current work of the project, previous stages of software development and the final goal to introduce VR to medical consulting rooms.
Resumo:
Mesenchymal stem cells (MSC) are emerging as a leading cellular therapy for a number of diseases. However, for such treatments to become available as a routine therapeutic option, efficient and cost-effective means for industrial manufacture of MSC are required. At present, clinical grade MSC are manufactured through a process of manual cell culture in specialized cGMP facilities. This process is open, extremely labor intensive, costly, and impractical for anything more than a small number of patients. While it has been shown that MSC can be cultivated in stirred bioreactor systems using microcarriers, providing a route to process scale-up, the degree of numerical expansion achieved has generally been limited. Furthermore, little attention has been given to the issue of primary cell isolation from complex tissues such as placenta. In this article we describe the initial development of a closed process for bulk isolation of MSC from human placenta, and subsequent cultivation on microcarriers in scalable single-use bioreactor systems. Based on our initial data, we estimate that a single placenta may be sufficient to produce over 7,000 doses of therapeutic MSC using a large-scale process.
Resumo:
Automated airborne collision-detection systems are a key enabling technology for facilitat- ing the integration of unmanned aerial vehicles (UAVs) into the national airspace. These safety-critical systems must be sensitive enough to provide timely warnings of genuine air- borne collision threats, but not so sensitive as to cause excessive false-alarms. Hence, an accurate characterisation of detection and false alarm sensitivity is essential for understand- ing performance trade-offs, and system designers can exploit this characterisation to help achieve a desired balance in system performance. In this paper we experimentally evaluate a sky-region, image based, aircraft collision detection system that is based on morphologi- cal and temporal processing techniques. (Note that the examined detection approaches are not suitable for the detection of potential collision threats against a ground clutter back- ground). A novel collection methodology for collecting realistic airborne collision-course target footage in both head-on and tail-chase engagement geometries is described. Under (hazy) blue sky conditions, our proposed system achieved detection ranges greater than 1540m in 3 flight test cases with no false alarm events in 14.14 hours of non-target data (under cloudy conditions, the system achieved detection ranges greater than 1170m in 4 flight test cases with no false alarm events in 6.63 hours of non-target data). Importantly, this paper is the first documented presentation of detection range versus false alarm curves generated from airborne target and non-target image data.
Resumo:
Teachers often have difficulty implementing inquiry-based activities, leading to the arousal of negative emotions. In this multicase study of beginning physics teachers in Australia, we were interested in the extent to which their expectations were realized and how their classroom experiences while implementing extended experimental investigations (EEIs) produced emotional states that mediated their teaching practices. Against rhetoric of fear expressed by their senior colleagues, three of the four teachers were surprised by the positive outcomes from their supervision of EEIs for the first time. Two of these teachers experienced high intensity positive emotions in response to their students’ success. When student actions / outcomes did not meet their teachers’ expectations, frustration, anger, and disappointment were experienced by the teachers, as predicted by a sociological theory of human emotions (Turner, 2007). Over the course of the EEI projects, the teachers’ practices changed along with their emotional states and their students’ achievements. We account for similarities and differences in the teachers’ emotional experiences in terms of context, prior experience, and expectations. The findings from this study provide insights into effective supervision practices that can be used to inform new and experienced teachers alike.
Resumo:
Polysulphone (PS) dosimetry has been a widely used technique for more than 30 years to quantify the erythemally effective UV dose received by anatomic sites (personal exposure). The calibration of PS dosimeters is an important issue as their spectral response is different from the erythemal action spectrum. It is performed exposing a set of PS dosimeters on a horizontal plane and measuring the UV doses received by dosimeters using calibrated spectroradiometers or radiometers. In this study, data collected during PS field campaigns (from 2004 to 2006), using horizontal and differently inclined dosimeters, were analyzed to provide some considerations on the transfer of the horizontal calibration to differently inclined dosimeters, as anatomic sites usually are. The role of sky conditions, of the angle of incidence between the sun and the normal to the slope, and of the type of surrounding surface on the calibration were investigated. It was concluded that PS horizontal calibrations apply to differently inclined dosimeters for incidence angles up to approximately 70 degrees and for surfaces excluding ones with high albedo. Caution should be used in the application of horizontal calibrations for cases of high-incidence angle and/or high albedo surfaces.
Resumo:
In this study, a hierarchical nano/microfibrous chitosan/collagen scaffold that approximates structural and functional attributes of native extracellular matrix (ECM), has been developed for applicability in skin tissue engineering. Scaffolds were produced by electrospinning of chitosan followed by imbibing of collagen solution, freeze-drying and subsequent cross-linking of two polymers. Scanning electron microscopy showed formation of layered scaffolds with nano/microfibrous architechture. Physico-chemical properties of scaffolds including tensile strength, swelling behavior and biodegradability were found satisfactory for intended application. 3T3 fibroblasts and HaCaT keratinocytes showed good in vitro cellular response on scaffolds thereby indicating the matrices′ cytocompatible nature. Scaffolds tested in an ex vivo human skin equivalent (HSE) wound model, as a preliminary alternative to animal testing, showed keratinocyte migration and wound re-epithelization — a pre-requisite for healing and regeneration. Taken together, the herein proposed chitosan/collagen scaffold, shows good potential for skin tissue engineering.
Resumo:
Current forensic practice in age estimation relies on the application of morphological standards as a means to characterize complex threedimensional skeletal surfaces. Research in our laboratory has demonstrated that the application of the morphologically based Suchey-Brooks method to a contemporary Queensland, Australian population demonstrated significant inaccuracy in age-estimation. Consequently, this study presents preliminary results to quantify age-related skeletal changes of the pubic symphysis in Queensland individuals using novel geometric and micro-architectural protocols that have the potential of improving age estimation in the forensic context. Computed tomography scans of the right and left pubis were obtained from Caucasian individuals aged 15–70 years (n=195) from the Queensland Health Forensic and Scientific Services. Morphometric variables including surface area, circumference, maximum height and width of the symphyseal surface, and micro-architectural assessment of cortical and trabecular bone structure were conducted in Rapidform XOS and Osteomeasure, respectively. Morphometric analysis demonstrated increases in maximum height and width of the surface with age independent of gender, with most significant (P<0.05) changes between the 25–34 and 55–64 year subsets. Sexual dimorphism and bilateral asymmetry were prominent features in the Queensland population. Micro-architectural analysis demonstrated degradation of cortical composition with age, with differential bone resorption between the medial, ventral and dorsal aspects of the symphysis. The ability to quantitatively model age-related changes to the pubic symphysis provides potential for future methodological refinement, where rigor and robust geometric assessment of the surface may remove the subjectivity associated with aging the pubic symphysis.
Resumo:
Limited research has been conducted with at-risk populations in examining perceived environmental correlates of physical activity (PA); thus, we examined this relationship among parents with young children, a group at risk for physical inactivity. Parents (252 mothers, 206 fathers) completed a questionnaire assessing measures of perceived neighborhood environment and a 1-week follow-up of PA behavior. Mothers were more likely than fathers to perceive their neighborhood as unsafe to go for walks at night and less likely to perceive transit stops within 10–15 minutes walking distance, sidewalks on most streets, and facilities to bicycle. Adjusting for demographics, shops within easy walking distance, sidewalks on most streets, and having no more than one motor vehicle were associated with being active for both sexes. Access to transit stops and free/low cost recreational facilities were also associated with mothers’ PA. These findings suggest that environmental factors may support parents being active at recommended levels.
Resumo:
Polycaprolactone (PCL) is a resorbable polymer used extensively in bone tissue engineering owing to good structural properties and processability. Strontium substituted bioactive glass (SrBG) has the ability to promote osteogenesis and may be incorporated into scaffolds intended for bone repair. Here we describe for the first time, the development of a PCL-SrBG composite scaffold incorporating 10% (weight) of SrBG particles into PCL bulk, produced by the technique of melt-electrospinning. We show that we are able to reproducibly manufacture composite scaffolds with an interconnected porous structure and, furthermore, these scaffolds were demonstrated to be non-cytotoxic in vitro. Ions present in the SrBG component were shown to dissolve into cell culture media and promoted precipitation of a calcium phosphate layer on the scaffold surface which in turn led to noticeably enhanced alkaline phosphatase activity in MC3T3-E1 cells compared to PLC-only scaffolds. These results suggest that melt-electrospun PCL-SrBG composite scaffolds show potential to become effective bone graft substitutes.
Resumo:
Sugarcane bagasse is an abundant and sustainable resource, generated as a by-product of sugarcane milling. The cellulosic material within bagasse can be broken down into glucose molecules and fermented to produce ethanol, making it a promising feedstock for biofuel production. Mild acid pretreatment hydrolyses the hemicellulosic component of biomass, thus allowing enzymes greater access to the cellulosic substrate during saccharification. A particle-scale mathematical model describing the mild acid pretreatment of sugarcane bagasse has been developed, using a volume averaged framework. Discrete population-balance equations are used to characterise the polymer degradation kinetics, and diffusive effects account for mass transport within the cell wall of the bagasse. As the fibrous material hydrolyses over time, variations in the porosity of the cell wall and the downstream effects on the reaction kinetics are accounted for using conservation of volume arguments. Non-dimensionalization of the model equations reduces the number of parameters in the system to a set of four dimensionless ratios that compare the timescales of different reaction and diffusion events. Theoretical yield curves are compared to macroscopic experimental observations from the literature and inferences are made as to constraints on these “unknown” parameters. These results enable connections to be made between experimental data and the underlying thermodynamics of acid pretreatment. Consequently, the results suggest that data-fitting techniques used to obtain kinetic parameters should be carefully applied, with prudent consideration given to the chemical and physiological processes being modeled.
Resumo:
Next-generation autonomous underwater vehicles (AUVs) will be required to robustly identify underwater targets for tasks such as inspection, localization, and docking. Given their often unstructured operating environments, vision offers enormous potential in underwater navigation over more traditional methods; however, reliable target segmentation often plagues these systems. This paper addresses robust vision-based target recognition by presenting a novel scale and rotationally invariant target design and recognition routine based on self-similar landmarks that enables robust target pose estimation with respect to a single camera. These algorithms are applied to an AUV with controllers developed for vision-based docking with the target. Experimental results show that the system performs exceptionally on limited processing power and demonstrates how the combined vision and controller system enables robust target identification and docking in a variety of operating conditions.