203 resultados para Robust Statistics
Resumo:
This paper investigates the impact of carrier frequency offset (CFO) on Single Carrier wireless communication systems with Frequency Domain Equalization (SC-FDE). We show that CFO in SC-FDE systems causes irrecoverable channel estimation error, which leads to inter-symbol-interference (ISI). The impact of CFO on SC-FDE and OFDM is compared in the presence of CFO and channel estimation errors. Closed form expressions of signal to interference and noise ratio (SINR) are derived for both systems, and verified by simulation results. We find that when channel estimation errors are considered, SC-FDE is similarly or even more sensitive to CFO, compared to OFDM. In particular, in SC-FDE systems, CFO mainly deteriorates the system performance via degrading the channel estimation. Both analytical and simulation results highlight the importance of accurate CFO estimation in SC-FDE systems.
Resumo:
This paper investigates a wireless sensor network deployment - monitoring water quality, e.g. salinity and the level of the underground water table - in a remote tropical area of northern Australia. Our goal is to collect real time water quality measurements together with the amount of water being pumped out in the area, and investigate the impacts of current irrigation practice on the environments, in particular underground water salination. This is a challenging task featuring wide geographic area coverage (mean transmission range between nodes is more than 800 meters), highly variable radio propagations, high end-to-end packet delivery rate requirements, and hostile deployment environments. We have designed, implemented and deployed a sensor network system, which has been collecting water quality and flow measurements, e.g., water flow rate and water flow ticks for over one month. The preliminary results show that sensor networks are a promising solution to deploying a sustainable irrigation system, e.g., maximizing the amount of water pumped out from an area with minimum impact on water quality.
Resumo:
In this paper, we outline the sensing system used for the visual pose control of our experimental car-like vehicle, the autonomous tractor. The sensing system consists of a magnetic compass, an omnidirectional camera and a low-resolution odometry system. In this work, information from these sensors is fused using complementary filters. Complementary filters provide a means of fusing information from sensors with different characteristics in order to produce a more reliable estimate of the desired variable. Here, the range and bearing of landmarks observed by the vision system are fused with odometry information and a vehicle model, providing a more reliable estimate of these states. We also present a method of combining a compass sensor with odometry and a vehicle model to improve the heading estimate.
Resumo:
Robust image hashing seeks to transform a given input image into a shorter hashed version using a key-dependent non-invertible transform. These image hashes can be used for watermarking, image integrity authentication or image indexing for fast retrieval. This paper introduces a new method of generating image hashes based on extracting Higher Order Spectral features from the Radon projection of an input image. The feature extraction process is non-invertible, non-linear and different hashes can be produced from the same image through the use of random permutations of the input. We show that the transform is robust to typical image transformations such as JPEG compression, noise, scaling, rotation, smoothing and cropping. We evaluate our system using a verification-style framework based on calculating false match, false non-match likelihoods using the publicly available Uncompressed Colour Image database (UCID) of 1320 images. We also compare our results to Swaminathan’s Fourier-Mellin based hashing method with at least 1% EER improvement under noise, scaling and sharpening.
Resumo:
Traditional speech enhancement methods optimise signal-level criteria such as signal-to-noise ratio, but these approaches are sub-optimal for noise-robust speech recognition. Likelihood-maximising (LIMA) frameworks are an alternative that optimise parameters of enhancement algorithms based on state sequences generated for utterances with known transcriptions. Previous reports of LIMA frameworks have shown significant promise for improving speech recognition accuracies under additive background noise for a range of speech enhancement techniques. In this paper we discuss the drawbacks of the LIMA approach when multiple layers of acoustic mismatch are present – namely background noise and speaker accent. Experimentation using LIMA-based Mel-filterbank noise subtraction on American and Australian English in-car speech databases supports this discussion, demonstrating that inferior speech recognition performance occurs when a second layer of mismatch is seen during evaluation.
Resumo:
Traditional speech enhancement methods optimise signal-level criteria such as signal-to-noise ratio, but such approaches are sub-optimal for noise-robust speech recognition. Likelihood-maximising (LIMA) frameworks on the other hand, optimise the parameters of speech enhancement algorithms based on state sequences generated by a speech recogniser for utterances of known transcriptions. Previous applications of LIMA frameworks have generated a set of global enhancement parameters for all model states without taking in account the distribution of model occurrence, making optimisation susceptible to favouring frequently occurring models, in particular silence. In this paper, we demonstrate the existence of highly disproportionate phonetic distributions on two corpora with distinct speech tasks, and propose to normalise the influence of each phone based on a priori occurrence probabilities. Likelihood analysis and speech recognition experiments verify this approach for improving ASR performance in noisy environments.
Resumo:
Expert knowledge is valuable in many modelling endeavours, particularly where data is not extensive or sufficiently robust. In Bayesian statistics, expert opinion may be formulated as informative priors, to provide an honest reflection of the current state of knowledge, before updating this with new information. Technology is increasingly being exploited to help support the process of eliciting such information. This paper reviews the benefits that have been gained from utilizing technology in this way. These benefits can be structured within a six-step elicitation design framework proposed recently (Low Choy et al., 2009). We assume that the purpose of elicitation is to formulate a Bayesian statistical prior, either to provide a standalone expert-defined model, or for updating new data within a Bayesian analysis. We also assume that the model has been pre-specified before selecting the software. In this case, technology has the most to offer to: targeting what experts know (E2), eliciting and encoding expert opinions (E4), whilst enhancing accuracy (E5), and providing an effective and efficient protocol (E6). Benefits include: -providing an environment with familiar nuances (to make the expert comfortable) where experts can explore their knowledge from various perspectives (E2); -automating tedious or repetitive tasks, thereby minimizing calculation errors, as well as encouraging interaction between elicitors and experts (E5); -cognitive gains by educating users, enabling instant feedback (E2, E4-E5), and providing alternative methods of communicating assessments and feedback information, since experts think and learn differently; and -ensuring a repeatable and transparent protocol is used (E6).
Resumo:
In this paper we propose a new method for utilising phase information by complementing it with traditional magnitude-only spectral subtraction speech enhancement through Complex Spectrum Subtraction (CSS). The proposed approach has the following advantages over traditional magnitude-only spectral subtraction: (a) it introduces complementary information to the enhancement algorithm; (b) it reduces the total number of algorithmic parameters, and; (c) is designed for improving clean speech magnitude spectra and is therefore suitable for both automatic speech recognition (ASR) and speech perception applications. Oracle-based ASR experiments verify this approach, showing an average of 20% relative word accuracy improvements when accurate estimates of the phase spectrum are available. Based on sinusoidal analysis and assuming stationarity between observations (which is shown to be better approximated as the frame rate is increased), this paper also proposes a novel method for acquiring the phase information called Phase Estimation via Delay Projection (PEDEP). Further oracle ASR experiments validate the potential for the proposed PEDEP technique in ideal conditions. Realistic implementation of CSS with PEDEP shows performance comparable to state of the art spectral subtraction techniques in a range of 15-20 dB signal-to-noise ratio environments. These results clearly demonstrate the potential for using phase spectra in spectral subtractive enhancement applications, and at the same time highlight the need for deriving more accurate phase estimates in a wider range of noise conditions.
Resumo:
Now in its sixth edition, the Traffic Engineering Handbook continues to be a must have publication in the transportation industry, as it has been for the past 60 years. The new edition provides updated information for people entering the practice and for those already practicing. The handbook is a convenient desk reference, as well as an all in one source of principles and proven techniques in traffic engineering. Most chapters are presented in a new format, which divides the chapters into four areas-basics, current practice, emerging trends and information sources. Chapter topics include road users, vehicle characteristics, statistics, planning for operations, communications, safety, regulations, traffic calming, access management, geometrics, signs and markings, signals, parking, traffic demand, maintenance and studies. In addition, as the focus in transportation has shifted from project based to operations based, two new chapters have been added-"Planning for Operations" and "Managing Traffic Demand to Address Congestion: Providing Travelers with Choices." The Traffic Engineering Handbook continues to be one of the primary reference sources for study to become a certified Professional Traffic Operations Engineer™. Chapters are authored by notable and experienced authors, and reviewed and edited by a distinguished panel of traffic engineering experts.
Resumo:
Computation Fluid Dynamics (CFD) has become an important tool in optimization and has seen successful in many real world applications. Most important among these is in the optimisation of aerodynamic surfaces which has become Multi-Objective (MO) and Multidisciplinary (MDO) in nature. Most of these have been carried out for a given set of input parameters such as free stream Mach number and angle of attack. One cannot ignore the fact that in aerospace engineering one frequently deals with situations where the design input parameters and flight/flow conditions have some amount of uncertainty attached to them. When the optimisation is carried out for fixed values of design variables and parameters however, one arrives at an optimised solution that results in good performance at design condition but poor drag or lift to drag ratio at slightly off-design conditions. The challenge is still to develop a robust design that accounts for uncertainty in the design in aerospace applications. In this paper this issue is taken up and an attempt is made to prevent the fluctuation of objective performance by using robust design technique or Uncertainty.
Resumo:
Online scheduling in the Operating Theatre Department is a dynamic process that deals with both elective and emergency patients. Each business day begins with an elective schedule determined in advance based on a mastery surgery schedule. Throughout the course of the day however, disruptions to this baseline schedule occur due to variations in treatment time, emergency arrivals, equipment failure and resource unavailability. An innovative robust reactive surgery assignment model is developed for the operating theatre department. Following the completion of each surgery, the schedule is re-solved taking into account any disruptions in order to minimise cancellations of pre-planned patients and maximise throughput of emergency cases. The single theatre case is solved and future work on the computationally more complex multiple theatre case under resource constraints is discussed.
Resumo:
This paper demonstrates the application of a robust form of pose estimation and scene reconstruction using data from camera images. We demonstrate results that suggest the ability of the algorithm to rival methods of RANSAC based pose estimation polished by bundle adjustment in terms of solution robustness, speed and accuracy, even when given poor initialisations. Our simulated results show the behaviour of the algorithm in a number of novel simulated scenarios reflective of real world cases that show the ability of the algorithm to handle large observation noise and difficult reconstruction scenes. These results have a number of implications for the vision and robotics community, and show that the application of visual motion estimation on robotic platforms in an online fashion is approaching real-world feasibility.