57 resultados para Retina - irrigação sangüínea
Resumo:
Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively.
Resumo:
Background Serum lutein (L) and zeaxanthin (Z) positively correlate with macular pigment optical density (MPOD), hence the latter is a valuable indirect tool for measuring L and Z content in the macula. L and Z have been attributed antioxidant capacity and protection from certain retinal diseases but their uptake within the eye is thought to depend on genetic, age and environmental factors. In particular gene variants within beta-carotene monooxygenase (BCMO1) are thought to modulate MPOD in the macula. Objectives: To determine the effect of BCMO1 single nucleotide polymorphisms (SNPs) rs11645428, rs6420424 and rs6464851 on macular pigment optical density (MPOD) in a cohort of young healthy participants of Caucasian origin with normal ocular health. Design In this cohort study, MPOD was assessed in 46 healthy participants (22 male and 24 female) with a mean age of 24 ± 4.0 years (range 19-33). The three SNPs, rs11645428, rs6420424, rs6564851 that have established associations with MPOD were determined using MassEXTEND (hME) Sequenom assay. One-way analysis of variance (ANOVA) was performed on groups segregated into homozygous and heterozygous BCMO1 genotypes. Correlations between body mass index (BMI), iris colour, gender, central retinal thickness (CRT), diet and MPOD were investigated. Results MPOD did not significantly vary with BCMO1 rs11645428 (F2,41 = 0.700, p = 0.503), rs6420424 (F2,41 = 0.210, p = 0.801) nor rs6464851 homozygous or heterozygous genotypes (F2,41 = 0,13, p = 0.88), in this young healthy cohort. The combination of these three SNPs into triple genotypes based on plasma conversion efficiency did not affect MPOD (F2,41 = 0.07, p = 0.9). There was a significant negative correlation with MPOD and central retinal thickness (r = - 0.39, p = 0.01) but no significant correlation between BMI, iris colour, gender and MPOD. Conclusion Our results indicate that macular pigment deposition within the central retina is not dependent on BCMO1 gene variants in young healthy people. We propose that MPOD is saturated in younger persons and/or other gene variant combinations determine its deposition.
Resumo:
Bombyx mori silk fibroin membranes provide a potential delivery vehicle for both cells and extracellular matrix (ECM) components into diseased or injured tissues. We have previously demonstrated the feasibility of growing retinal pigment epithelial cells (RPE) on fibroin membranes with the view to repairing the retina of patients afflicted with age-related macular degeneration (AMD). The goal of the present study was to investigate the feasibility of incorporating the ECM component elastin, in the form of human recombinant tropoelastin, into these same membranes. Two basic strategies were explored: (1) membranes prepared from blended solutions of fibroin and tropoelastin; and (2) layered constructs prepared from sequentially cast solutions of fibroin, tropoelastin, and fibroin. Optimal conditions for RPE attachment were achieved using a tropoelastin-fibroin blend ratio of 10 to 90 parts by weight. Retention of tropoelastin within the blend and layered constructs was confirmed by immunolabelling and Fourier-transform infrared spectroscopy (FTIR). In the layered constructs, the bulk of tropoelastin was apparently absorbed into the initially cast fibroin layer. Blend membranes displayed higher elastic modulus, percentage elongation, and tensile strength (p < 0.01) when compared to the layered constructs. RPE cell response to fibroin membranes was not affected by the presence of tropoelastin. These findings support the potential use of fibroin membranes for the co-delivery of RPE cells and tropoelastin.
Resumo:
Changes to the redox status of biological systems have been implicated in the pathogenesis of a wide variety of disorders including cancer, Ischemia-reperfusion (I/R) injury and neurodegeneration. In times of metabolic stress e.g. ischaemia/reperfusion, reactive oxygen species (ROS) production overwhelms the intrinsic antioxidant capacity of the cell, damaging vital cellular components. The ability to quantify ROS changes in vivo, is therefore essential to understanding their biological role. Here we evaluate the suitability of a novel reversible profluorescent probe containing a redox-sensitive nitroxide moiety (methyl ester tetraethylrhodamine nitroxide, ME-TRN), as an in vivo, real-time reporter of retinal oxidative status. The reversible nature of the probe's response offers the unique advantage of being able to monitor redox changes in both oxidizing and reducing directions in real time. After intravitreal administration of the ME-TRN probe, we induced ROS production in rat retina using an established model of complete, acute retinal ischaemia followed by reperfusion. After restoration of blood flow, retinas were imaged using a Micron III rodent fundus fluorescence imaging system, to quantify the redox-response of the probe. Fluorescent intensity declined during the first 60 min of reperfusion. The ROS-induced change in probe fluorescence was ameliorated with the retinal antioxidant, lutein. Fluorescence intensity in non-Ischemia eyes did not change significantly. This new probe and imaging technology provide a reversible and real-time response to oxidative changes and may allow the in vivo testing of antioxidant therapies of potential benefit to a range of diseases linked to oxidative stress
Resumo:
Purpose To determine neuroretinal function with multifocal electroretinogram (mfERG) in diabetic subjects without retinopathy. Methods Multifocal electroretinogram (mfERG) was performed in 18 eyes of 18 diabetic subjects without retinopathy and 17 eyes of 17 age and gender-matched healthy control participants. Among 18 diabetic subjects, two had type 1 and 16 had type 2 diabetes. MfERG responses were averaged by the retinal areas of six concentric rings and four quadrants, and 103 retinal locations; N1–P1 amplitude and P1-implicit time were analysed. Results Average mfERG N1–P1 amplitude (in nv/deg2) of 103 retinal locations was 56.3 ± 17.2 (mean ± SD) in type 1 diabetic subjects, 47.2 ± 9.3 in type 2 diabetic subjects and 71.5 ± 12.7 in controls. Average P1-implicit time (in ms) was 43.0 ± 1.3 in type 1 diabetic subjects, 43.9 ± 2.3 in type 2 diabetic subjects and 41.9 ± 2.1 in controls. There was significant reduction in average N1–P1 amplitude and delay in P1-implicit time in type 2 diabetic subjects in comparison to controls. mfERG amplitude did not show any significant correlation with diabetes duration and blood sugar level. However, implicit time showed a positive correlation with diabetes duration in type 2 diabetic subjects with diabetes duration ≥5 years. Conclusions This is the first study in a Nepalese population with diabetes using multifocal electroretinography. We present novel findings that mfERG N1–P1 amplitude is markedly reduced along with delay in P1-implicit time in type 2 diabetic subjects without retinopathy. These findings indicate that there might be significant dysfunction of inner retina before the development of diabetic retinopathy in the study population, which have higher prevalence of diabetes than the global estimate and uncontrolled blood sugar level.
Resumo:
Aims/hypothesis Diabetic retinopathy is a serious complication of diabetes mellitus and can lead to blindness. A genetic component, in addition to traditional risk factors, has been well described although strong genetic factors have not yet been identified. Here, we aimed to identify novel genetic risk factors for sight-threatening diabetic retinopathy using a genome-wide association study. Methods Retinopathy was assessed in white Australians with type 2 diabetes mellitus. Genome-wide association analysis was conducted for comparison of cases of sight-threatening diabetic retinopathy (n = 336) with diabetic controls with no retinopathy (n = 508). Top ranking single nucleotide polymorphisms were typed in a type 2 diabetes replication cohort, a type 1 diabetes cohort and an Indian type 2 cohort. A mouse model of proliferative retinopathy was used to assess differential expression of the nearby candidate gene GRB2 by immunohistochemistry and quantitative western blot. Results The top ranked variant was rs3805931 with p = 2.66 × 10−7, but no association was found in the replication cohort. Only rs9896052 (p = 6.55 × 10−5) was associated with sight-threatening diabetic retinopathy in both the type 2 (p = 0.035) and the type 1 (p = 0.041) replication cohorts, as well as in the Indian cohort (p = 0.016). The study-wide meta-analysis reached genome-wide significance (p = 4.15 × 10−8). The GRB2 gene is located downstream of this variant and a mouse model of retinopathy showed increased GRB2 expression in the retina. Conclusions/interpretation Genetic variation near GRB2 on chromosome 17q25.1 is associated with sight-threatening diabetic retinopathy. Several genes in this region are promising candidates and in particular GRB2 is upregulated during retinal stress and neovascularisation.
Resumo:
We report a genome-wide association study for open-angle glaucoma (OAG) blindness using a discovery cohort of 590 individuals with severe visual field loss (cases) and 3,956 controls. We identified associated loci at TMCO1 (rs4656461[G] odds ratio (OR) = 1.68, P = 6.1 × 10-10) and CDKN2B-AS1 (rs4977756[A] OR = 1.50, P = 4.7 × 10-9). We replicated these associations in an independent cohort of cases with advanced OAG (rs4656461 P = 0.010; rs4977756 P = 0.042) and two additional cohorts of less severe OAG (rs4656461 combined discovery and replication P = 6.00 × 10-14, OR = 1.51, 95% CI 1.35-1.68; rs4977756 combined P = 1.35 × 10-14, OR = 1.39, 95% CI 1.28-1.51). We show retinal expression of genes at both loci in human ocular tissues. We also show that CDKN2A and CDKN2B are upregulated in the retina of a rat model of glaucoma. © 2011 Nature America, Inc. All rights reserved.
Resumo:
Purpose To determine whether melanopsin expressing intrinsically photosensitive Retinal Ganglion Cell (ipRGC) inputs to the pupil light reflex (PLR) are affected in early age-related macular degeneration (AMD). Methods The PLR was measured in 40 participants (20 early AMD and 20 age-matched controls) using a custom-built Maxwellian-view pupillometer. Sinusoidal stimuli (0.5 Hz, 11.9 s duration, 35.6° diameter) were presented to the study eye and the consensual pupil response was measured for stimuli with high melanopsin excitation (464nm; blue) and with low melanopsin excitation (638 nm; red) that biased activation to the outer retina. Two melanopsin PLR metrics were quantified: the Phase Amplitude Percentage (PAP) during the sinusoidal stimulus presentation and the Post-Illumination Pupil Response (PIPR). The PLR during stimulus presentation was analyzed using latency to constriction, transient pupil response and maximum pupil constriction metrics. Diagnostic accuracy was evaluated using receiver operating characteristic (ROC) curves. Results The blue PIPR was significantly less sustained in the early AMD group (p<0.001). The red PIPR was not significantly different between groups (p>0.05). The PAP and blue stimulus constriction amplitude were significantly lower in the early AMD group (p < 0.05). There was no significant difference between groups in the latency or transient amplitude for both stimuli (p>0.05). ROC analysis showed excellent diagnostic accuracy for the blue PIPR metrics (AUC>0.9). Conclusions This is the initial report that the melanopsin controlled PIPR is dysfunctional in early AMD. The non-invasive, objective measurement of the ipRGC controlled PIPR has excellent diagnostic accuracy for early AMD.
Resumo:
Purpose Melanopsin-expressing retinal ganglion cells (mRGCs) have non-image forming functions including mediation of the pupil light reflex (PLR). There is limited knowledge about mRGC function in retinal disease. Initial retinal changes in age-related macular degeneration (AMD) occur in the paracentral region where mRGCs have their highest density, making them vulnerable during disease onset. In this cross-sectional clinical study, we measured the PLR to determine if mRGC function is altered in early stages of macular degeneration. Methods Pupil responses were measured in 8 early AMD patients (AREDS 2001 classification; mean age 72.6 ± 7.2 years, 5M, and 3F) and 12 healthy control participants (mean age 66.6 ± 6.1 years, 8M and 4F) using a custom-built Maxwellian-view pupillometer. Stimuli were 0.5 Hz sinewaves (10 s duration, 35.6° diameter) of short wavelength light (464nm, blue; retinal irradiance = 14.5 log quanta.cm-2.s-1) to produce high melanopsin excitation and of long wavelength light (638nm, red; retinal irradiance = 14.9 log quanta.cm-2.s-1), to bias activation to outer retina and provide a control. Baseline pupil diameter was determined during a 10 s pre-stimulus period. The post illumination pupil response (PIPR) was recorded for 40 s. The 6 s PIPR and maximum pupil constriction were expressed as percentage baseline (M ± SD). Results The blue PIPR was significantly less sustained (p<0.01) in the early AMD group (75.49 ± 7.88%) than the control group (58.28 ± 9.05%). The red PIPR was not significantly different (p>0.05) between the early AMD (84.79 ± 4.03%) and control groups (82.01 ± 5.86%). Maximum constriction amplitude in the early AMD group for blue (43.67 ± 6.35%) and red (48.64 ± 6.49%) stimuli were not significantly different to the control group for blue (39.94 ± 3.66%) and red (44.98 ± 3.15%) stimuli (p>0.05). Conclusions These results are suggestive of inner retinal mRGC deficits in early AMD. This non-invasive, objective measure of pupil responses may provide a new method for quantifying mRGC function and monitoring AMD progression.
Resumo:
OBJECTIVE Corneal confocal microscopy is a novel diagnostic technique for the detection of nerve damage and repair in a range of peripheral neuropathies, in particular diabetic neuropathy. Normative reference values are required to enable clinical translation and wider use of this technique. We have therefore undertaken a multicenter collaboration to provide worldwide age-adjusted normative values of corneal nerve fiber parameters. RESEARCH DESIGN AND METHODS A total of 1,965 corneal nerve images from 343 healthy volunteers were pooled from six clinical academic centers. All subjects underwent examination with the Heidelberg Retina Tomograph corneal confocal microscope. Images of the central corneal subbasal nerve plexus were acquired by each center using a standard protocol and analyzed by three trained examiners using manual tracing and semiautomated software (CCMetrics). Age trends were established using simple linear regression, and normative corneal nerve fiber density (CNFD), corneal nerve fiber branch density (CNBD), corneal nerve fiber length (CNFL), and corneal nerve fiber tortuosity (CNFT) reference values were calculated using quantile regression analysis. RESULTS There was a significant linear age-dependent decrease in CNFD (-0.164 no./mm(2) per year for men, P < 0.01, and -0.161 no./mm(2) per year for women, P < 0.01). There was no change with age in CNBD (0.192 no./mm(2) per year for men, P = 0.26, and -0.050 no./mm(2) per year for women, P = 0.78). CNFL decreased in men (-0.045 mm/mm(2) per year, P = 0.07) and women (-0.060 mm/mm(2) per year, P = 0.02). CNFT increased with age in men (0.044 per year, P < 0.01) and women (0.046 per year, P < 0.01). Height, weight, and BMI did not influence the 5th percentile normative values for any corneal nerve parameter. CONCLUSIONS This study provides robust worldwide normative reference values for corneal nerve parameters to be used in research and clinical practice in the study of diabetic and other peripheral neuropathies.
Resumo:
Thickness measurements derived from optical coherence tomography (OCT) images of the eye are a fundamental clinical and research metric, since they provide valuable information regarding the eye’s anatomical and physiological characteristics, and can assist in the diagnosis and monitoring of numerous ocular conditions. Despite the importance of these measurements, limited attention has been given to the methods used to estimate thickness in OCT images of the eye. Most current studies employing OCT use an axial thickness metric, but there is evidence that axial thickness measures may be biased by tilt and curvature of the image. In this paper, standard axial thickness calculations are compared with a variety of alternative metrics for estimating tissue thickness. These methods were tested on a data set of wide-field chorio-retinal OCT scans (field of view (FOV) 60° x 25°) to examine their performance across a wide region of interest and to demonstrate the potential effect of curvature of the posterior segment of the eye on the thickness estimates. Similarly, the effect of image tilt was systematically examined with the same range of proposed metrics. The results demonstrate that image tilt and curvature of the posterior segment can affect axial tissue thickness calculations, while alternative metrics, which are not biased by these effects, should be considered. This study demonstrates the need to consider alternative methods to calculate tissue thickness in order to avoid measurement error due to image tilt and curvature.
Resumo:
"Biomaterials and Regenerative Medicine in Ophthalmology, Second Edition, focuses on an aging population and the increasing instances of eye diseases. Biomaterials continue to be used for numerous medical devices for the restoration of eyesight, improving many patients’ quality of life. Consequently, biomaterials and regenerative medicine are becoming increasingly important to the advances of ophthalmology and optometry. This book provides readers with an updated and expanded look at the present status and future direction of biomaterials and regenerative medicine in this important field."--Publisher website