105 resultados para Residue lignocellulosic
Resumo:
BACKGROUND: Demineralized freeze-dried bone allografts (DFDBAs) have been proposed as a useful adjunct in periodontal therapy to induce periodontal regeneration through the induction of new bone formation. The presence of bone morphogenetic proteins (BMPs) within the demineralized matrix has been proposed as a possible mechanism through which DFDBA may exert its biologic effect. However, in recent years, the predictability of results using DFDBA has been variable and has led to its use being questioned. One reason for the variability in tissue response may be attributed to differences in the processing of DFDBA, which may lead to loss of activity of any bioactive substances within the DFDBA matrix. Therefore, the purpose of this investigation was to determine whether there are detectable levels of bone morphogenetic proteins in commercial DFDBA preparations. METHODS: A single preparation of DFDBA was obtained from three commercial sources. Each preparation was studied in triplicate. Proteins within the DFDBA samples were first extracted with 4M guanidinium HCI for seven days at 40 degrees celsius and the residue was further extracted with 4M guanidinium HCL/EDTA for seven days at 40 degrees celsius. Two anti-human BMP-2 and -4 antibodies were used for the detection of the presence of BMP's in the extracts. RESULTS: Neither BMP-2 nor BMP-4 was detected in any of the extracts. When recombinant human BMP-2 and -4 were added throughout the extraction process of DFDBA extraction, not only were intact proteins detected but smaller molecular weight fragments were also noted in the extract. CONCLUSIONS: These results indicate that all of the DFDBA samples tested had no detectable amounts of BMP-2 and -4. In addition, an unknown substance present in the DFDBA may be responsible for degradation of whatever BMPs might be present.
Resumo:
Recombinant human papillomavirus (HPV) virus-like particles (VLPs) made from the major capsid protein L1 are promising vaccine candidates for use as vaccines against genital and other HPV infections, and particularly against HPV-16. However, HPV-16 genotype variants have different binding affinities for neutralising mouse Mabs raised against HPV-16 L1 VLPs. This paper analyses, using a panel of well-characterised Mabs, the effects on the antigenicity of various C- and N-terminal deletants of HPV-16 L1 made in insect cells via recombinant baculovirus, of an A → T mutation at residue 266 (A266T), and of a C → G mutation at conserved position 428 (C428G). The effects of these changes on assembly of the variant L1s were studied by electron microscopy. Binding of Mab H16:E70 to A266T was reduced by almost half in comparison to wild type L1. Retention of the C-terminal region 428-483 was critical for the binding of conformation-specific Mabs (H16:V5, H16:E70, H16:U4 and H16:9A) whereas deletion of the nuclear localisation signal (NLS) or the C428G mutation or an N-terminal deletion (residues 2-9) did not affect the antigenicity. The N-terminal deletion resulted in a mixed population of 30 and 55 nm VLPs, which differs from the same construct expressed in Escherichia coli, whereas pentamer aggregates resulted from deletion of the 428-465 region or the C428G mutation. The results have implications both for considering use of single-genotype HPV vaccines, and for design of novel second-generation vaccines. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Pretretament is an essential and expensive processing step for the manufacturing of ethanol from lignocellulosic raw materials. Ionic liquids are a new class of solvents that have the potential to be used as pretreatment agents. The attractive characteristics of ionic liquid pretreatment of lignocellulosics such as thermal stability, dissolution properties, fractionation potential, cellulose decrystallisation capacity and saccharification impact are investigated in this thesis. Dissolution of bagasse with 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) at high temperatures (110 �‹C to 160 �‹C) is investigated as a pretreatment process. Material balances are reported and used along with enzymatic saccharification data to identify optimum pretreatment conditions (150 �‹C for 90 min). At these conditions, the dissolved and reprecipitated material is enriched in cellulose, has a low crystallinity and the cellulose component is efficiently hydrolysed (93 %, 3 h, 15 FPU). At pretreatment temperatures < 150 �‹C, the undissolved material has only slightly lower crystallinity than the starting. At pretreatment temperatures . 150 �‹C, the undissolved material has low crystallinity and when combined with the dissolved material has a saccharification rate and extent similar to completely dissolved material (100 %, 3h, 15 FPU). Complete dissolution is not necessary to maximize saccharification efficiency at temperatures . 150 �‹C. Fermentation of [C4mim]Cl-pretreated, enzyme-saccharified bagasse to ethanol is successfully conducted (85 % molar glucose-to-ethanol conversion efficiency). As compared to standard dilute acid pretreatment, the optimised [C4mim]Cl pretreatment achieves substantially higher ethanol yields (79 % cf. 52 %) in less than half the processing time (pretreatment, saccharification, fermentation). Fractionation of bagasse partially dissolved in [C4mim]Cl to a polysaccharide rich and a lignin rich fraction is attempted using aqueous biphasic systems (ABSs) and single phase systems with preferential precipitation. ABSs of ILs and concentrated aqueous inorganic salt solutions are achievable (e.g. [C4mim]Cl with 200 g L-1 NaOH), albeit they exhibit a number of technical problems including phase convergence (which increases with increasing biomass loading) and deprotonation of imidazolium ILs (5 % - 8 % mol). Single phase fractionation systems comprising lignin solvents / cellulose antisolvents, viz. NaOH (2M) and acetone in water (1:1, volume basis), afford solids with, respectively, 40 % mass and 29 % mass less lignin than water precipitated solids. However, this delignification imparts little increase in saccharification rates and extents of these solids. An alternative single phase fractionation system is achieved simply by using water as an antisolvent. Regulating the water : IL ratio results in a solution that precipitates cellulose and maintains lignin in solution (0.5 water : IL mass ratio) in both [C4mim]Cl and 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc)). This water based fractionation is applied in three IL pretreatments on bagasse ([C4mim]Cl, 1-ethyl-3-methyl imidazolium chloride ([C2mim]Cl) and [C2mim]OAc). Lignin removal of 10 %, 50 % and 60 % mass respectively is achieved although only 0.3 %, 1.5 % and 11.7 % is recoverable even after ample water addition (3.5 water : IL mass ratio) and acidification (pH . 1). In addition the recovered lignin fraction contains 70 % mass hemicelluloses. The delignified, cellulose-rich bagasse recovered from these three ILs is exposed to enzyme saccharification. The saccharification (24 h, 15 FPU) of the cellulose mass in starting bagasse, achieved by these pretreatments rank as: [C2mim]OAc (83 %)>>[C2mim]Cl (53 %)=[C4mim]Cl(53%). Mass balance determinations accounted for 97 % of starting bagasse mass for the [C4mim]Cl pretreatment , 81 % for [C2mim]Cl and 79 %for [C2mim]OAc. For all three IL treatments, the remaining bagasse mass (not accounted for by mass balance determinations) is mainly (more than half) lignin that is not recoverable from the liquid fraction. After pretreatment, 100 % mass of both ions of all three ILs were recovered in the liquid fraction. Compositional characteristics of [C2mim]OAc treated solids such as low lignin, low acetyl group content and preservation of arabinosyl groups are opposite to those of chloride IL treated solids. The former biomass characteristics resemble those imparted by aqueous alkali pretreatment while the latter resemble those of aqueous acid pretreatments. The 100 % mass recovery of cellulose in [C2mim]OAc as opposed to 53 % mass recovery in [C2mim]Cl further demonstrates this since the cellulose glycosidic bonds are protected under alkali conditions. The alkyl chain length decrease in the imidazolium cation of these ILs imparts higher rates of dissolution and losses, and increases the severity of the treatment without changing the chemistry involved.
Resumo:
Lignocellulosic materials including agricultural, municipal and forestry residues, and dedicated bioenergy crops offer significant potential as a renewable feedstock for the production of fuels and chemicals. These products can be chemically or functionally equivalent to existing products that are produced from fossil-based feedstocks. To unlock the potential of lignocellulosic materials, it is necessary to pretreat or fractionate the biomass to make it amenable to downstream processing. This chapter explores current and developing technologies for the pretreatment and fractionation of lignocellulosic biomass for the production of chemicals and fuels.
Resumo:
THE Mackay Renewable Biocommodities Pilot Plant is a pilot scale facility owned and operated by QUT for research and demonstration of the conversion of lignocellulosic biomass such as sugarcane bagasse into biofuels. The pilot plant accommodates unique state-of-the-art equipment to process a wide range of feedstocks and is strategically located on the site of the Mackay Sugar Ltd Racecourse Mill. Major facilities include a biomass handling system, pre-treatment reactor, saccharification reactor, fermentors, distillation column and bioseparations equipment. This paper provides an update on the design, construction, commissioning and start-up of the facility. In addition, the paper provides results from preliminary facility trials on the pre-treatment of sugarcane bagasse for cellulosic ethanol production.
Resumo:
This investigation has shown that by transforming free caustic in red mud (RM) to Bayer hydrotalcite (during the seawater neutralization (SWN) process) enables a more controlled release mechanism for the neutralization of acid sulfate soils. The formation of hydrotalcite has been confirmed by X-ray diffraction (XRD) and differential thermalgravimetric analysis (DTG), while the dissolution of hydrotalcite and sodalite has been observed through XRD, DTG, pH plots, and ICP-OES. Coupling of all techniques enabled three neutralization mechanisms to be determined: (1) free alkali, (2) hydrotalcite dissolution, and (3) sodalite dissolution. The mechanisms are determined on the basis of ICP-OES and kinetic information. When the mass of RM or SWN-RM is greater than 0.08 g/50 mL, the pH of solution increases to a suitable value for plant life with aluminum leaching kept at a minimum. To obtain a neutralization pH greater than 6 in 10 min, the following ratio of bauxite residue (g) in 50 mL with a known iron sulfate (Fe2(SO4)3) concentration can be determined as follows: 0.04 g:50 mL:0.1 g/L of Fe2(SO4)3.
Resumo:
Lignocellulosic materials, such as sugar cane bagasse, a waste product of the sugarcane processing industry, agricultural residues and herbaceous crops, may serve as an abundant and comparatively cheap feedstock for largescale industrial fermentation, resulting in the production of marketable end-products. However, the complex structure of lignocellulosic materials, the presence of various hexose and pentose sugars in the hemicellulose component, and the presence of various compounds that inhibit the organisms selected for the fermentation process, all constitute barriers that add to the production costs and make full scale industrial production economically less feasible. The work presented in this thesis was conducted in order to screen microorganisms for ability to utilize pentose sugars derived from the sugar mill industrial waste. A large number of individual bacterial strains were investigated from hemi-cellulose rich material collected at the Proserpine and Maryborough sugar mills, notably soil samples from the mill sites. The research conducted to isolation of six pentose-capable Gram-positive organisms from the actinomycetes group by using pentose as a sole carbon source in the cultivation process. The isolates were identified as Corynebacterium glutamicum, Actinomyces odontolyticus, Nocardia elegans, and Propionibacterium freudenreichii all of which were isolated from the hemicellulose-enriched soil. Pentose degrading microbes are very rare in the environment, so this was a significant discovery. Previous research indicated that microbes could degrade pentose after genetic modification but the microbes discovered in this research were able to naturally utilize pentose. Six isolates, identified as four different genera, were investigated for their ability to utilize single sugars as substrates (glucose, xylose, arabinose or ribose), and also dual sugars as substrates (a hexose plus a pentose). The results demonstrated that C. glutamicum, A. odontolyticus, N. elegans, and P. freudenreichii were pentose-capable (able to grow using xylose or other pentose sugar), and also showed diauxie growth characteristics during the dual-sugar (glucose, in combination with xylose, arabinose or ribose) carbon source tests. In addition, it was shown that the isolates displayed very small differences in growth rates when grown on dual sugars as compared to single sugars, whether pentose or hexose in nature. The anabolic characteristics of C. glutamicum, A. odontolyticus, N. elegans and P. freudenreichii were subsequently investigated by qualitative analysis of their end-products, using high performance liquid chromatography (HPLC). All of the organisms produced arginine and cysteine after utilization of the pentose substrates alone. In addition, P. freudenreichii produced alanine and glycine. The end-product profile arising from culture with dual carbon sources was also tested. Interestingly, this time the product was different. All of them produced the amino acid glycine, when grown on a combination substrate-mix of glucose with xylose, and also glucose with arabinose. Only N. elegans was able to break down ribose, either singly or in combination with glucose, and the end-product of metabolism of the glucose plus ribose substrate combination was glutamic acid. The ecological analysis of microbial abundance in sugar mill waste was performed using denaturing gradient gel electrophoresis (DGGE) and also the metagenomic microarray PhyloChip method. Eleven solid samples and seven liquid samples were investigated. A very complex bacterial ecosystem was demonstrated in the seven liquid samples after testing with the PhyloChip method. It was also shown that bagasse leachate was the most different, compared to all of the other samples, by virtue of its richness in variety of taxa and the complexity of its bacterial community. The bacterial community in solid samples from Proserpine, Mackay and Maryborough sugar mills showed huge diversity. The information found from 16S rDNA sequencing results was that the bacterial genera Brevibacillus, Rhodospirillaceae, Bacillus, Vibrio and Pseudomonas were present in greatest abundance. In addition, Corynebacterium was also found in the soil samples. The metagenomic studies of the sugar mill samples demonstrate two important outcomes: firstly that the bagasse leachate, as potentially the most pentose-rich sample tested, had the most complex and diverse bacterial community; and secondly that the pentose-capable isolates that were initially discovered at the beginning of this study, were not amongst the most abundant taxonomic groups discovered in the sugar mill samples, and in fact were, as suspected, very rare. As a bioprospecting exercise, therefore, the study has discovered organisms that are naturally present, but in very small numbers, in the appropriate natural environment. This has implications for the industrial application of E-PUB, in that a seeding process using a starter culture will be necessary for industrial purposes, rather than simply assuming that natural fermentation might occur.
Resumo:
Locally available different bbiomass solid wastes, pine seed, date seed, plum seed, nutshell, hay of catkin, rice husk, jute stick, saw-dust, wheat straw and linseed residue in the particle form have been pyrolyzed in laboratory scale fixed bed reactor. The products obtained are pyrolysis oil, solid char and gas. The oil and char are collected while the gas is flared into atmosphere. The variation of oil yield for different biomass feedstock with reaction parameters like, reactor bed temperature, feed size and running time is presented in a comparative way in the paper. A maximum liquid yield of 55 wt% of dry feedstock is obtained at an optimum temperature of 500 °C for a feed size of 300-600 μm with a running time of 55 min with nutshell as the feedstock while the minimum liquid yield is found to be 30 wt% of feedstock at an optimum temperature of 400 °C for a feed size of 2.36 mm with a running time of 65 min for linseed residue. A detailed study on the variation of product yields with reaction parameters is presented for the latest investigation with pine seed as the feedstock where a maximum liquid yield of 40 wt% of dry feedstock is obtained at an optimum temperature of 500 °C for a feed size of 2.36-2.76 mm with a running time of 120 min. The characterization of the pyrolysis oil is carried out and a comparison of some selected properties of the oil is presented. From the study it is exhibited that the biomass solid wastes have the potential to be converted into liquid oil as a source of renewable energy with some further upgrading of the products.
Resumo:
Background The novel breast cancer metastasis modulator gene signal-induced proliferation-associated 1 (Sipa1) underlies the breast cancer metastasis efficiency modifier locus Mtes 1 and has been shown to influence mammary tumour metastatic efficiency in the mouse, with an ectopically expressing Sipa1 cell line developing 1.5 to 2 fold more surface pulmonary metastases. Sipa1 encodes a mitogen-inducible GTPase activating (GAP) protein for members of the Ras-related proteins; participates in cell adhesion and modulates mitogen-induced cell cycle progression. Germline SIPA1 SNPs showed association with positive lymph node metastasis and hormonal receptor status in a Caucasian cohort. We hypothesized that SIPA1 may also be correlated to breast carcinoma incidence as well as prognosis. Therefore, this study investigated the potential relationship of SIPA1 and human breast cancer incidence by a germline SNP genotype frequency association study in a case-control Caucasian cohort in Queensland, Australia. Methods The SNPs genotyped in this study were identified in a previous study and the genotyping assays were carried out using TaqMan SNP Genotyping Assays. The data were analysed with chi-square method and the Monte Carlo style CLUMP analysis program. Results Results indicated significance with SIPA1 SNP rs3741378; the CC genotype was more frequently observed in the breast cancer group compared to the disease-free control group, indicating the variant C allele was associated with increased breast cancer incidence. Conclusion This observation indicates SNP rs3741378 as a novel potential sporadic breast cancer predisposition SNP. While it showed association with hormonal receptor status in breast cancer group in a previous pilot study, this exonic missense SNP (Ser (S) to Phe (F)) changes a hydrophilic residue (S) to a hydrophobic residue (F) and may significantly alter the protein functions of SIPA1 in breast tumourgenesis. SIPA1 SNPs rs931127 (5' near gene), and rs746429 (synonymous (Ala (A) to Ala (A)), did not show significant associations with breast cancer incidence, yet were associated with lymph node metastasis in the previous study. This suggests that SIPA1 may be involved in different stages of breast carcinogenesis and since this study replicates a previous study of the associated SNP, it implicates variants of the SIPA1 gene as playing a potential role in breast cancer.
Resumo:
High density SNP arrays can be used to identify DNA copy number changes in tumors such as homozygous deletions of tumor suppressor genes and focal amplifications of oncogenes. Illumina Human CNV370 Bead chip arrays were used to assess the genome for unbalanced chromosomal events occurring in 39 cell lines derived from stage III metastatic melanomas. A number of genes previously recognized to have an important role in the development and progression of melanoma were identified including homozygous deletions of CDKN2A (13 of 39 samples), CDKN2B (10 of 39), PTEN (3 of 39), PTPRD (3 of 39), TP53 (1 of 39), and amplifications of CCND1 (2 of 39), MITF (2 of 39), MDM2 (1 of 39), and NRAS (1 of 39). In addition, a number of focal homozygous deletions potentially targeting novel melanoma tumor suppressor genes were identified. Because of their likely functional significance for melanoma progression, FAS, CH25H, BMPR1A, ACTA2, and TFG were investigated in a larger cohort of melanomas through sequencing. Nonsynonymous mutations were identified in BMPR1A (1 of 43), ACTA2 (3 of 43), and TFG (5 of 103). A number of potentially important mutation events occurred in TFG including the identification of a mini mutation ‘‘hotspot’’ at amino acid residue 380 (P380S and P380L) and the presence of multiple mutations in two melanomas. Mutations in TFG may have important clinical relevance for current therapeutic strategies to treat metastatic melanoma.
Resumo:
Wide-Area Measurement Systems (WAMS) provide the opportunity of utilizing remote signals from different locations for the enhancement of power system stability. This paper focuses on the implementation of remote measurements as supplementary signals for off-center Static Var Compensators (SVCs) to damp inter-area oscillations. Combination of participation factor and residue method is used for the selection of most effective stabilizing signal. Speed difference of two generators from separate areas is identified as the best stabilizing signal and used as a supplementary signal for lead-lag controller of SVCs. Time delays of remote measurements and control signals is considered. Wide-Area Damping Controller (WADC) is deployed in Matlab Simulink framework and is tested under different operating conditions. Simulation results reveal that the proposed WADC improve the dynamic characteristic of the system significantly.
Resumo:
Background IL-20 is a pleiotrophic member of the IL-10 family and plays a role in skin biology and the development of haematopoietic cells. Recently, IL-20 has been demonstrated to have potential anti-angiogenic effects in non-small cell lung cancer (NSCLC) by down regulating COX-2. Methods The expression of IL-20 and its cognate receptors (IL-20RA/B and IL-22R1) was examined in a series of resected fresh frozen NSCLC tumours. Additionally, the expression and epigenetic regulation of this family was examined in normal bronchial epithelial and NSCLC cell lines. Furthermore, the effect of IL-20 on VEGF family members was examined. Results The expression of IL-20 and its receptors are frequently dysregulated in NSCLC. IL-20RB mRNA was significantly elevated in NSCLC tumours (p < 0.01). Protein levels of the receptors, IL-20RB and IL-22R1, were significantly increased (p < 0.01) in the tumours of NSCLC patients. IL-20 and its receptors were found to be epigenetically regulated through histone post-translational modifications and DNA CpG residue methylation. In addition, treatment with recombinant IL-20 resulted in decreased expression of the VEGF family members at the mRNA level. Conclusions This family of genes are dysregulated in NSCLC and are subject to epigenetic regulation. Whilst the anti-angiogenic properties of IL-20 require further clarification, targeting this family via epigenetic means may be a viable therapeutic option in lung cancer treatment. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
IRE1 couples endoplasmic reticulum unfolded protein load to RNA cleavage events that culminate in the sequence-specific splicing of the Xbp1 mRNA and in the regulated degradation of diverse membrane-bound mRNAs. We report on the identification of a small molecule inhibitor that attains its selectivity by forming an unusually stable Schiff base with lysine 907 in the IRE1 endonuclease domain, explained by solvent inaccessibility of the imine bond in the enzyme-inhibitor complex. The inhibitor (abbreviated 4μ8C) blocks substrate access to the active site of IRE1 and selectively inactivates both Xbp1 splicing and IRE1-mediated mRNA degradation. Surprisingly, inhibition of IRE1 endonuclease activity does not sensitize cells to the consequences of acute endoplasmic reticulum stress, but rather interferes with the expansion of secretory capacity. Thus, the chemical reactivity and sterics of a unique residue in the endonuclease active site of IRE1 can be exploited by selective inhibitors to interfere with protein secretion in pathological settings.
Resumo:
A series of NR composites filled with modified kaolinite (MK), carbon black (CB) and the hybrid fillercontained MK and CB, were prepared by melt blending. The microstructure, combustion and thermaldecomposition behaviors of NR composites were characterized by TEM, XRD, infrared spectroscopy, conecalorimeter test (CCT) and thermal-gravimetric analysis (TG). The results show that the filler hybridizationcan improve the dispensability and shape of the kaolinite sheets in the rubber matrix and change theinterface bond between kaolinite particles and rubber molecules. NR-3 filled by 10 phr MK and 40 phr CBhas the lowest heat release rate (HRR), mass loss rate (MLR), total heat release (THR), smoke productionrate (SPR) and the highest char residue among all the NR composites. Therefore, the hybridization ofthe carbon black particles with the kaolinite particles can effectively improve the thermal stability andcombustion properties of NR composites.
Resumo:
The genomes of an Australian and a Canadian isolate of potato leafroll virus have been cloned and sequenced. The sequences of both isolates are similar (about 93%), but the Canadian isolate (PLRV-C) is more closely related (about 98% identity) to a Scottish (PLRV-S) and a Dutch isolate (PLRV-N) than to the Australian isolate (PLRV-A). The 5'-terminal 18 nucleotide residues of PLRV-C, PLRV-A, PLRV-N and beet western yellows virus have 17 residues in common. In contrast, PLRV-S shows no obvious similarity in this region. PLRV-A and PLRV-C genomic sequences have localized regions of marked diversity, in particular a 600 nucleotide residue sequence in the polymerase gene. These data provide a world-wide perspective on the molecular biology of PLRV strains and their comparison with other luteoviruses and related RNA plant viruses suggests that there are two major subgroups in the plant luteoviruses.