355 resultados para Renormalization schemes
Resumo:
A multi-secret sharing scheme allows several secrets to be shared amongst a group of participants. In 2005, Shao and Cao developed a verifiable multi-secret sharing scheme where each participant’s share can be used several times which reduces the number of interactions between the dealer and the group members. In addition some secrets may require a higher security level than others involving the need for different threshold values. Recently Chan and Chang designed such a scheme but their construction only allows a single secret to be shared per threshold value. In this article we combine the previous two approaches to design a multiple time verifiable multi-secret sharing scheme where several secrets can be shared for each threshold value. Since the running time is an important factor for practical applications, we will provide a complexity comparison of our combined approach with respect to the previous schemes.
Resumo:
The construction and operation of infrastructure assets can have significant impact on society and the region. Using a sustainability assessment framework can be an effective means to build sustainability aspects into the design, construction and operation of infrastructure assets. The conventional evaluation processes and procedures for infrastructure projects do not necessarily measure the qualitative/quantitative effectiveness of all aspects of sustainability: environment, social wellbeing and economy. As a result, a few infrastructure sustainability rating schemes have been developed with a view to assess the level of sustainability attained in the infrastructure projects. These include: Infrastructure Sustainability (Australia); CEEQUAL (UK); and Envision (USA). In addition, road sector specific sustainability rating schemes such as Greenroads (USA) and Invest (Australia) have also been developed. These schemes address several aspects of sustainability with varying emphasis (weightings) on areas such as: use of resources; emission, pollution and waste; ecology; people and place; management and governance; and innovation. The attainment of sustainability of an infrastructure project depends largely on addressing the whole-of-life environmental issues. This study has analysed the rating schemes’ coverage of different environmental components for the road infrastructure under the five phases of a project: material, construction, use, maintenance and end-of-life. This is based on a comprehensive life cycle assessment (LCA) system boundary. The findings indicate that there is a need for the schemes to consider key (high impact) life cycle environmental components such as traffic congestion during construction, rolling resistance due to surface roughness and structural stiffness of the pavement, albedo, lighting, and end-of-life management (recycling) to deliver sustainable road projects.
Resumo:
We characterise ideal threshold schemes from different approaches. Since the characteristic properties are independent to particular descriptions of threshold schemes, all ideal threshold schemes can be examined by new points of view and new results on ideal threshold schemes can be discovered.
Resumo:
In this paper the renormalization group (RG) method of Chen, Goldenfeld, and Oono [Phys. Rev. Lett., 73 (1994), pp.1311-1315; Phys. Rev. E, 54 (1996), pp.376-394] is presented in a pedagogical way to increase its visibility in applied mathematics and to argue favorably for its incorporation into the corresponding graduate curriculum.The method is illustrated by some linear and nonlinear singular perturbation problems. Key word. © 2012 Society for Industrial and Applied Mathematics.
Resumo:
This paper introduces a straightforward method to asymptotically solve a variety of initial and boundary value problems for singularly perturbed ordinary differential equations whose solution structure can be anticipated. The approach is simpler than conventional methods, including those based on asymptotic matching or on eliminating secular terms. © 2010 by the Massachusetts Institute of Technology.
Resumo:
With nine examples, we seek to illustrate the utility of the Renormalization Group approach as a unification of other asymptotic and perturbation methods.
Resumo:
This article elucidates and analyzes the fundamental underlying structure of the renormalization group (RG) approach as it applies to the solution of any differential equation involving multiple scales. The amplitude equation derived through the elimination of secular terms arising from a naive perturbation expansion of the solution to these equations by the RG approach is reduced to an algebraic equation which is expressed in terms of the Thiele semi-invariants or cumulants of the eliminant sequence { Zi } i=1 . Its use is illustrated through the solution of both linear and nonlinear perturbation problems and certain results from the literature are recovered as special cases. The fundamental structure that emerges from the application of the RG approach is not the amplitude equation but the aforementioned algebraic equation. © 2008 The American Physical Society.
Resumo:
This article lays down the foundations of the renormalization group (RG) approach for differential equations characterized by multiple scales. The renormalization of constants through an elimination process and the subsequent derivation of the amplitude equation [Chen, Phys. Rev. E 54, 376 (1996)] are given a rigorous but not abstract mathematical form whose justification is based on the implicit function theorem. Developing the theoretical framework that underlies the RG approach leads to a systematization of the renormalization process and to the derivation of explicit closed-form expressions for the amplitude equations that can be carried out with symbolic computation for both linear and nonlinear scalar differential equations and first order systems but independently of their particular forms. Certain nonlinear singular perturbation problems are considered that illustrate the formalism and recover well-known results from the literature as special cases. © 2008 American Institute of Physics.
Resumo:
We have developed a technique that circumvents the process of elimination of secular terms and reproduces the uniformly valid approximations, amplitude equations, and first integrals. The technique is based on a rearrangement of secular terms and their grouping into the secular series that multiplies the constants of the asymptotic expansion. We illustrate the technique by deriving amplitude equations for standard nonlinear oscillator and boundary-layer problems. © 2008 The American Physical Society.
Resumo:
In this paper the method of renormalization group (RG) [Phys. Rev. E 54, 376 (1996)] is related to the well-known approximations of Rytov and Born used in wave propagation in deterministic and random media. Certain problems in linear and nonlinear media are examined from the viewpoint of RG and compared with the literature on Born and Rytov approximations. It is found that the Rytov approximation forms a special case of the asymptotic expansion generated by the RG, and as such it gives a superior approximation to the exact solution compared with its Born counterpart. Analogous conclusions are reached for nonlinear equations with an intensity-dependent index of refraction where the RG recovers the exact solution. © 2008 Optical Society of America.
Resumo:
The work presents a new method for the design of ideal secret sharing. The method uses regular mappings that are well suited for construction of perfect secret sharing. The restriction of regular mappings to permutations gives a convenient tool for investigation of the relation between permutations and ideal secret sharing generated by them.
Resumo:
We observe that MDS codes have interesting properties that can be used to construct ideal threshold schemes. These schemes permit the combiner to detect cheating, identify cheaters and recover the correct secret. The construction is later generalised so the resulting secret sharing is resistant against the Tompa-Woll cheating.
Resumo:
The work investigates the design of ideal threshold secret sharing in the context of cheating prevention. We showed that each orthogonal array is exactly a defining matrix of an ideal threshold scheme. To prevent cheating, defining matrices should be nonlinear so both the cheaters and honest participants have the same chance of guessing of the valid secret. The last part of the work shows how to construct nonlinear secret sharing based on orthogonal arrays.
Resumo:
We consider the problem of increasing the threshold parameter of a secret-sharing scheme after the setup (share distribution) phase, without further communication between the dealer and the shareholders. Previous solutions to this problem require one to start off with a non-standard scheme designed specifically for this purpose, or to have secure channels between shareholders. In contrast, we show how to increase the threshold parameter of the standard CRT secret-sharing scheme without secure channels between the shareholders. Our method can thus be applied to existing CRT schemes even if they were set up without consideration to future threshold increases. Our method is a positive cryptographic application for lattice reduction algorithms, and we also use techniques from lattice theory (geometry of numbers) to prove statements about the correctness and information-theoretic security of our constructions.
Resumo:
We consider the problem of increasing the threshold parameter of a secret-sharing scheme after the setup (share distribution) phase, without further communication between the dealer and the shareholders. Previous solutions to this problem require one to start off with a non-standard scheme designed specifically for this purpose, or to have communication between shareholders. In contrast, we show how to increase the threshold parameter of the standard Shamir secret-sharing scheme without communication between the shareholders. Our technique can thus be applied to existing Shamir schemes even if they were set up without consideration to future threshold increases. Our method is a new positive cryptographic application for lattice reduction algorithms, inspired by recent work on lattice-based list decoding of Reed-Solomon codes with noise bounded in the Lee norm. We use fundamental results from the theory of lattices (Geometry of Numbers) to prove quantitative statements about the information-theoretic security of our construction. These lattice-based security proof techniques may be of independent interest.