112 resultados para Reef Morphology
Resumo:
We demonstrate for the first time the ionic-liquid-mediated synthesis of nanostructured CuTCNQ by the simple immersion of copper in a solution of TCNQ where the viscosity of the medium significantly impacts the corrosion–crystallization process and the final morphology of the material.
Resumo:
Outbreaks of the coral-killing seastar Acanthaster planci are intense disturbances that can decimate coral reefs. These events consist of the emergence of large swarms of the predatory seastar that feed on reef-building corals, often leading to widespread devastation of coral populations. While cyclic occurrences of such outbreaks are reported from many tropical reefs throughout the Indo-Pacific, their causes are hotly debated, and the spatio-temporal dynamics of the outbreaks and impacts to reef communities remain unclear. Based on observations of a recent event around the island of Moorea, French Polynesia, we show that Acanthaster outbreaks are methodic, slow-paced, and diffusive biological disturbances. Acanthaster outbreaks on insular reef systems like Moorea's appear to originate from restricted areas confined to the ocean-exposed base of reefs. Elevated Acanthaster densities then progressively spread to adjacent and shallower locations by migrations of seastars in aggregative waves that eventually affect the entire reef system. The directional migration across reefs appears to be a search for prey as reef portions affected by dense seastar aggregations are rapidly depleted of living corals and subsequently left behind. Coral decline on impacted reefs occurs by the sequential consumption of species in the order of Acanthaster feeding preferences. Acanthaster outbreaks thus result in predictable alteration of the coral community structure. The outbreak we report here is among the most intense and devastating ever reported. Using a hierarchical, multi-scale approach, we also show how sessile benthic communities and resident coral-feeding fish assemblages were subsequently affected by the decline of corals. By elucidating the processes involved in an Acanthaster outbreak, our study contributes to comprehending this widespread disturbance and should thus benefit targeted management actions for coral reef ecosystems.
Resumo:
Introduction Stretching of tissue stimulates angiogenesis but increased motion at a fracture site hinders revascularisation. In vitro studies have indicated that mechanical stimuli promote angiogenic responses in endothelial cells, but can either inhibit or enhance responses when applied directly to angiogenesis assays. We anticipated that cyclic tension applied during endothelial network assembly would increase vascular structure formation up to a certain threshold. Methods Fibroblast/HUVEC co-cultures were subjected to cyclic equibiaxial strain (1 Hz; 6 h/day; 7 days) using the FlexerCell FX-4000T system and limiting rings for simultaneous application of multiple strain magnitudes (0–13%). Cells were labelled using anti-PECAM-1, and image analysis provided measures of endothelial network length and numbers of junctions. Results Cyclic stretching had no significant effect on the total length of endothelial networks (P > 0.2) but resulted in a strain-dependent decrease in branching and localised alignments of endothelial structures, which were in turn aligned with the supporting fibroblastic construct. Conclusion The organisation of endothelial networks under cyclic strain is dominated by structural adaptation to the supporting construct. It may be that, in fracture healing, the formation and integrity of the granulation tissue and callus is ultimately critical in revascularisation and its failure under severe strain conditions.
Resumo:
It is increasingly apparent that sea-level data (e.g. microfossil transfer functions, dated coral microatolls and direct observations from satellite and tidal gauges) vary temporally and spatially at regional to local scales, thus limiting our ability to model future sea-level rise for many regions. Understanding sealevel response at ‘far-field’ locations at regional scales is fundamental for formulating more relevant sea-level rise susceptibility models within these regions under future global change projections. Fossil corals and reefs in particular are valuable tools for reconstructing past sea levels and possible environmental phase shifts beyond the temporal constraints of instrumental records. This study used abundant surface geochronological data based on in situ subfossil corals and precise elevation surveys to determine previous sea level in Moreton Bay, eastern Australia, a far-field site. A total of 64 U-Th dates show that relative sea level was at least 1.1 m above modern lowest astronomical tide (LAT) from at least ˜6600 cal. yr BP. Furthermore, a rapid synchronous demise in coral reef growth occurred in Moreton Bay ˜5800 cal. yr BP, coinciding with reported reef hiatus periods in other areas around the Indo-Pacific region. Evaluating past reef growth patterns and phases allows for a better interpretation of anthropogenic forcing versus natural environmental/climatic cycles that effect reef formation and demise at all scales and may allow better prediction of reef response to future global change.
Resumo:
This paper presents the Mossman Mill District Practices Framework. It was developed in the Wet Tropics region within the Great Barrier Reef in north-eastern Australia to describe the environmental benefits of agricultural management practices for the sugar cane industry. The framework translates complex, unclear and overlapping environmental plans, policy and legal arrangements into a simple framework of management practices that landholders can use to improve their management actions. Practices range from those that are old or outdated through to aspirational practices that have the potential to achieve desired resource condition targets. The framework has been applied by stakeholders at multiple scales to better coordinate and integrate a range of policy arrangements to improve natural resource management. It has been used to structure monitoring and evaluation in order to underpin a more adaptive approach to planning at mill district and property scale. Potentially, the framework and approach can be applied across fields of planning where adaptive management is needed. It has the potential to overcome many of the criticisms of property-scale and regional Natural Resource Management.
Resumo:
In coastal areas, extreme weather events, such as floods and cyclones, can have debilitating effects on the social and economic viability of marine-based industries. In March 2011, the Great Barrier Reef Marine Park Authority implemented an Extreme Weather Response Program, following a period of intense flooding and cyclonic activity between December 2010 and February 2011. In this paper, we discuss the results of a project within the Program, which aimed to: (1) assess the impacts of extreme weather events on regional tourism and commercial fishing industries; and (2) develop and road-test an impact assessment matrix to improve government and industry responses to extreme weather events. Results revealed that extreme weather events both directly and indirectly affected all five of the measured categories, i.e. ecological, personal, social, infrastructure and economic components. The severity of these impacts, combined with their location and the nature of their business, influenced how tourism operators and fishers assessed the impact of the events (low, medium, high or extreme). The impact assessment tool was revised following feedback obtained during stakeholder workshops and may prove useful for managers in responding to potential direct and indirect impacts of future extreme weather events on affected marine industries. © 2013 Planning Institute Australia.
Resumo:
Healthy governance systems are key to delivering sound environmental management outcomes from global to local scales. There are, however, surprisingly few risk assessment methods that can pinpoint those domains and sub-domains within governance systems that are most likely to influence good environmental outcomes at any particular scale, or those if absent or dysfunctional, most likely to prevent effective environmental management. This paper proposes a new risk assessment method for analysing governance systems. This method is then tested through its preliminary application to a significant real-world context: governance as it relates to the health of Australia's Great Barrier Reef (GBR). The GBR exists at a supra-regional scale along most of the north eastern coast of Australia. Brodie et al (2012 Mar. Pollut. Bull. 65 81-100) have recently reviewed the state and trend of the health of the GBR, finding that overall trends remain of significant concern. At the same time, official international concern over the governance of the reef has recently been signalled globally by the International Union for the Conservation of Nature (IUCN). These environmental and political contexts make the GBR an ideal candidate for use in testing and reviewing the application of improved tools for governance risk assessment. © 2013 IOP Publishing Ltd.
Resumo:
Loss of cell-cell adhesion in carcinoma cells may be an important step in the acquisition of an invasive, metastatic phenotype. We have examined the expression of the epithelial-specific cell adhesion molecule uvomorulin (E-cadherin, cell-CAM 120/80, L-CAM) in human breast cancer cell lines. We find that fibroblastoid, highly invasive, vimentin-expressing breast cancer cell lines do not express uvomorulin. Of the more epithelial-appearing, less invasive, keratin-expressing breast cancer cell lines, some express uvomorulin, and some do not. We examined the morphologies of the cell lines in the reconstituted basement membrane matrix Matrigel and measured the ability of the cells to traverse a Matrigel-coated filter as in vitro models for detachment of carcinoma cells from neighboring cells and invasion through basement membrane into surrounding tissue. Colonies of uvomorulin-positive cells have a characteristic fused appearance in Matrigel, whereas uvomorulin-negative cells appear detached. Cells which are uvomorulin negative and vimentin positive have a stellate morphology in Matrigel. We show that uvomorulin is responsible for the fused colony morphology in Matrigel since treatment of uvomorulin-positive MCF-7 cells with an antibody to uvomorulin caused the cells to detach from one another but did not induce invasiveness in these cells, as measured by their ability to cross a Matrigel-coated polycarbonate filter in a modified Boyden chamber assay. Two uvomorulin-negative, vimentin-negative cell lines are also not highly invasive as measured by this assay. We suggest that loss of uvomorulin-mediated cell-cell adhesion may be one of many changes involved in the progression of a carcinoma cell to an invasive phenotype.
Resumo:
The life history strategies of massive Porites corals make them a valuable resource not only as key providers of reef structure, but also as recorders of past environmental change. Yet recent documented evidence of an unprecedented increase in the frequency of mortality in Porites warrants investigation into the history of mortality and associated drivers. To achieve this, both an accurate chronology and an understanding of the life history strategies of Porites are necessary. Sixty-two individual Uranium–Thorium (U–Th) dates from 50 dead massive Porites colonies from the central inshore region of the Great Barrier Reef (GBR) revealed the timing of mortality to have occurred predominantly over two main periods from 1989.2 ± 4.1 to 2001.4 ± 4.1, and from 2006.4 ± 1.8 to 2008.4 ± 2.2 A.D., with a small number of colonies dating earlier. Overall, the peak ages of mortality are significantly correlated with maximum sea-surface temperature anomalies. Despite potential sampling bias, the frequency of mortality increased dramatically post-1980. These observations are similar to the results reported for the Southern South China Sea. High resolution measurements of Sr/Ca and Mg/Ca obtained from a well preserved sample that died in 1994.6 ± 2.3 revealed that the time of death occurred at the peak of sea surface temperatures (SST) during the austral summer. In contrast, Sr/Ca and Mg/Ca analysis in two colonies dated to 2006.9 ± 3.0 and 2008.3 ± 2.0, suggest that both died after the austral winter. An increase in Sr/Ca ratios and the presence of low Mg-calcite cements (as determined by SEM and elemental ratio analysis) in one of the colonies was attributed to stressful conditions that may have persisted for some time prior to mortality. For both colonies, however, the timing of mortality coincides with the 4th and 6th largest flood events reported for the Burdekin River in the past 60 years, implying that factors associated with terrestrial runoff may have been responsible for mortality. Our results show that a combination of U–Th and elemental ratio geochemistry can potentially be used to precisely and accurately determine the timing and season of mortality in modern massive Porites corals. For reefs where long-term monitoring data are absent, the ability to reconstruct historical events in coral communities may prove useful to reef managers by providing some baseline knowledge on disturbance history and associated drivers.
Resumo:
The particle size, morphology, crystallinity order and structural defects of four kaolinite samples are characterized by the techniques including particle size analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). The particle size of four kaolinite samples gradually increases. Four samples all belong to the ordered kaolinite and show a decrease in structural order with the increase of kaolinite particle size. The changes of structural defect are proved by the increase of the band splitting in Raman spectroscopy, the decrease of the intensity of absorption bands in infrared spectroscopy, and the decrease of equivalent silicon atom and the increase of nonequivalent aluminum atom in MAS NMR spectroscopy. The differences in morphology and structural defect are attributed to the broken bonds of Al–O–Si, Al–O–Al and Si–O–Si and the Al substitution for Si in tetrahedral sheets.
Resumo:
The Wet Tropics region has a unique water asset and is also considered a priority region for the improvement of water quality entering the Great Barrier Reef due to a combination of high rainfall, intensive agricultural use, urban areas and the proximity of valuable reef assets to the coast. Agricultural activities are one of many identified threats to water quality and water flows in the Wet Tropics in terms of sediment and pollutant-related water quality decline. Information describing the current state of agricultural management practices across the region is patchy at best. Based on the best available information on agricultural management practices in the Wet Tropics in 2008, it is clear that opportunities exist to improve nutrient, sediment and pesticide management practice to reduce the impact on the water asset and the Great Barrier Reef. Based on current understandings of practices and the relationship between practices and reef water quality, the greatest opportunities for improved water quality are as follows: · nutrients – correct rate and the placement of fertilisers; · pesticides – improve weed control planning, herbicide rates and calibration practice; and · soil and sediment – implement new farming system practices. The 2008-09 Reef Rescue program sought to accelerate the rate of adoption of improved management practices and through Terrain invested $6.8M in the 2008-09 year for: · landholder water quality improvement incentive payments; · cross regional catchment repair of wetlands and riparian lands in areas of high sediment or nutrient loss; and · partnerships in the region to lever resources and support for on-ground practice change. The program delivered $3,021,999 in onground incentives to landholders in the Wet Tropics to improve farm practices from D or C level to B or A level. The landholder Water Quality Incentives Grants program received 300 individual applications for funding and funded 143 individual landholders to implement practice change across 36,098 ha of farm land. It is estimated that the Reef Rescue program facilitated practice change across 21% of the cane industry, and 20% of the banana industry. The program levered an additional $2,441,166 in landholder cash contributions and a further $907,653 in non-cash in-kind contributions bringing the total project value of the landholder grants program in the Wet Tropics to $6,370,819. Most funded projects targeted multiple water quality objectives with a focus on nutrient and sediment reduction. Of the 143 projects funded, 115 projects addressed nutrient management either as the primary focus or in combination with strategies that targeted other water quality objectives. Overall, 82 projects addressed two or more water quality targets. Forty-five percent of incentive funds were allocated to new farming system practices (direct drill legumes, zonal tillage equipment, permanent beds, min till planting equipment, GPS units, laser levelling), followed by 24% allocated to subsurface fertiliser applicators (subsurface application of fertiliser using a stool splitter or beside the stool, at the correct Six Easy Steps rate). As a result, Terrain estimates that the incentive grants achieved considerable reductions in nitrogen, phosphorus, sediment and pesticide loads. The program supported nutrient management training of 167 growers managing farms covering over 20% of the area harvested in 2008, and 18 industry advisors and resellers. This resulted in 115 growers (155 farms) developing nutrient management plans. The program also supported Integrated Weed Management training of 80 growers managing farms covering 8% of the area harvested in 2008, and 6 industry advisors and resellers. This report, which draws on the best available Reef Rescue Management Monitoring, Evaluation, Reporting, and Improvement (MERI) information to evaluate program performance and impact on water quality outcomes, is the first in a series of annual reports that will assess and evaluate the impact of the Reef Rescue program on agricultural practices and water quality outcomes. The assessment is predominantly focused on the cane industry because of data availability. In the next stage, efforts will expand to: · improve practice data for the banana and grazing industry; · gain a better understanding of the water quality trends and the factors influencing them in the Wet Tropics; in particular work will focus on linking the results of the Paddock to Reef monitoring program and practice change data to assess program impact; · enhance estimations of the impact of practice change on pollutant loads from agricultural land use; · gain a better understanding of the extent of ancillary practice (change not directly funded) resulting from Reef Rescue training/ education/communication programs; and · provide a better understanding of the economic cost of practice change across the Wet Tropics region. From an ecological perspective, water quality trends and the factors that may be contributing to change, require further investigation. There is a critical need to work towards an enhanced understanding of the link between catchment land management practice change and reef water quality, so that reduced nutrient, sediment, and pesticide discharge to the Great Barrier Reef can be quantified. This will also assist with future prioritisation of grants money to agricultural industries, catchments and sub catchments. From a social perspective, the program has delivered significant water quality benefits from landholder education and training. It is believed that these activities are giving landholders the information and tools to implement further lasting change in their production systems and in doing so, creating a change in attitude that is supportive and inclusive of Natural Resource Management (NRM). The program in the Wet Tropics has also considerably strengthened institutional partnerships for NRM, particularly between NRM and industry and extension organisations. As a result of the Reef Rescue program, all institutions are actively working together to collectively improve water quality. The Reef Rescue program is improving water quality entering the Great Barrier Reef Lagoon by catalysing substantial activity in the Wet Tropics region to improve land management practices and reduce the water quality impact of agricultural landscapes. The solid institutional partnerships between the regional body, industry, catchment and government organisations have been fundamental to the successful delivery of the landholder grant and catchment rehabilitation programs. Landholders have generally had a positive perception and reaction to the program, its intent, and the practical, focused nature of grant-based support. Demand in the program was extremely high in 2008-09 and is expected to increase in 2009-2010.
Resumo:
We report on the comparative study of magnetotransport properties of large-area vertical few-layer graphene networks with different morphologies, measured in a strong (up to 10 T) magnetic field over a wide temperature range. The petal-like and tree-like graphene networks grown by a plasma enhanced CVD process on a thin (500 nm) silicon oxide layer supported by a silicon wafer demonstrate a significant difference in the resistance-magnetic field dependencies at temperatures ranging from 2 to 200 K. This behaviour is explained in terms of the effect of electron scattering at ultra-long reactive edges and ultra-dense boundaries of the graphene nanowalls. Our results pave a way towards three-dimensional vertical graphene-based magnetoelectronic nanodevices with morphology-tuneable anisotropic magnetic properties. © The Royal Society of Chemistry 2013.
Resumo:
The possibility of effective control of morphology and electrical properties of self-organized graphene structures on plasma-exposed Si surfaces is demonstrated. The structures are vertically standing nanosheets and can be grown without any catalyst and any external heating upon direct contact with high-density inductively coupled plasmas at surface temperatures not exceeding 673–723 K. Study of nucleation and growth dynamics revealed the possibility to switch-over between the two most common (turnstile- and maze-like) morphologies on the same substrates by a simple change of the plasma parameters. This change leads to the continuous or discontinuous native oxide layer that supports self-organized patterns of small carbon nanoparticles on which the structures nucleate. It is shown that by tailoring the nanoparticle arrangement one can create various three-dimensional architectures and networks of graphene nanosheet structures. We also demonstrate effective control of the degree of graphitization of the graphene nanosheet structures from the initial through the final growth stages. This makes it possible to tune the electrical resistivity properties of the produced three-dimensional patterns/networks from strongly dielectric to semiconducting. Our results contribute to enabling direct integration of graphene structures into presently dominant Si-based nanofabrication platform for next-generation nanoelectronic, sensor, biomedical, and optoelectronic components and nanodevices.
Resumo:
The possibility to control the morphology and nucleation density of quasi-one-dimensional, single-crystalline α -Fe2 O3 nanostructures by varying the electric potential of iron surfaces exposed to reactive oxygen plasmas is demonstrated experimentally. A systematic increase in the oxygen ion flux through rf biasing of otherwise floating substrates and then an additional increase of the ion/neutral density resulted in remarkable structural transformations of straight nanoneedles into nanowires with controlled tapering/aspect ratio and also in larger nucleation densities. Multiscale numerical simulations relate the microscopic ion flux topographies to the nanostructure nucleation and morphological evolution. This approach is applicable to other metal-oxide nanostructures.