362 resultados para Recognition accuracy
Resumo:
OBJECTIVE: To compare, in patients with cancer and in healthy subjects, measured resting energy expenditure (REE) from traditional indirect calorimetry to a new portable device (MedGem) and predicted REE. DESIGN: Cross-sectional clinical validation study. SETTING: Private radiation oncology centre, Brisbane, Australia. SUBJECTS: Cancer patients (n = 18) and healthy subjects (n = 17) aged 37-86 y, with body mass indices ranging from 18 to 42 kg/m(2). INTERVENTIONS: Oxygen consumption (VO(2)) and REE were measured by VMax229 (VM) and MedGem (MG) indirect calorimeters in random order after a 12-h fast and 30-min rest. REE was also calculated from the MG without adjustment for nitrogen excretion (MGN) and estimated from Harris-Benedict prediction equations. Data were analysed using the Bland and Altman approach, based on a clinically acceptable difference between methods of 5%. RESULTS: The mean bias (MGN-VM) was 10% and limits of agreement were -42 to 21% for cancer patients; mean bias -5% with limits of -45 to 35% for healthy subjects. Less than half of the cancer patients (n = 7, 46.7%) and only a third (n = 5, 33.3%) of healthy subjects had measured REE by MGN within clinically acceptable limits of VM. Predicted REE showed a mean bias (HB-VM) of -5% for cancer patients and 4% for healthy subjects, with limits of agreement of -30 to 20% and -27 to 34%, respectively. CONCLUSIONS: Limits of agreement for the MG and Harris Benedict equations compared to traditional indirect calorimetry were similar but wide, indicating poor clinical accuracy for determining the REE of individual cancer patients and healthy subjects.
Resumo:
This paper investigates the effectiveness of virtual product placement as a marketing tool by examining the relationship between brand recall and recognition and virtual product placement. It also aims to address a gap in the existing academic literature by focusing on the impact of product placement on recall and recognition of new brands. The growing importance of product placement is discussed and a review of previous research on product placement and virtual product placement is provided. The research methodology used to study the recall and recognition effects of virtual product placement are described and key findings presented. Finally, implications are discussed and recommendations for future research provided.
Resumo:
The effectiveness of higher-order spectral (HOS) phase features in speaker recognition is investigated by comparison with Mel Cepstral features on the same speech data. HOS phase features retain phase information from the Fourier spectrum unlikeMel–frequency Cepstral coefficients (MFCC). Gaussian mixture models are constructed from Mel– Cepstral features and HOS features, respectively, for the same data from various speakers in the Switchboard telephone Speech Corpus. Feature clusters, model parameters and classification performance are analyzed. HOS phase features on their own provide a correct identification rate of about 97% on the chosen subset of the corpus. This is the same level of accuracy as provided by MFCCs. Cluster plots and model parameters are compared to show that HOS phase features can provide complementary information to better discriminate between speakers.